Publications by authors named "Shairam Manickaraj"

Bone tissue regeneration is augmented by biocompatible nanofiber scaffolds, that supports reliable and enhanced bone formation. Zinc is an essential mineral that is vital for routine skeletal growth and it emerges to be able to improve bone regeneration. Phytochemicals, particularly flavonoids have achieved prominent interest for their therapeutic ability, they have demonstrated promising effects on bone by encouraging osteoblastogenesis, which finally leads to bone formation.

View Article and Find Full Text PDF

Synthesis of copper oxide nanoparticles without any chemical reductant is always a challenging methodology for biological studies. In this study, sinapic acid, a phytochemical, is used for the synthesis of stable copper oxide nanoparticles. The as-synthesized nanoparticles were characterized thoroughly using UV-Visible, IR spectroscopy, Transmission Electron Microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

In the recent decades, flavonoid metal complexes have been widely investigated for their multifaceted role in enabling osteoblast differentiation and bone formation. Silibinin complexed with copper(II) ion has been synthesized along with two mixed ligand complexes, namely copper(II) silibinin-phenanthroline and neocuproine as co-ligands, and their positive role in promoting neovacularization and osteoblast differentiation was investigated. Silibinin mono complex [Cu(sil)(HO)] and [Cu(sil)(phen)] showed similar UV-visible absorption in the region of 315 and 222 nm, whereas Cu(silibinin)(neocuproine) [Cu(sil)(neo)] showed a blueshift in the 320 nm transition.

View Article and Find Full Text PDF

Zinc silibinin complex [Zn(sil)(HO)] and mixed ligand zinc complexes such as Zn(silibinin)(phenanthroline) [Zn(sil)(phen)], and Zn(silibinin)(neocuproine) [Zn(sil)(neo)] have been synthesized and characterized. The UV-vis spectra of the Zn(II) complexes showed a considerable shift in the intra-ligand transition. From the IR spectra, it is clear that carbonyl group in the C-ring is involved in the metal chelation besides A/C-ring hydroxyl group.

View Article and Find Full Text PDF

Environmental factors including pollution affect human health, and the unifying factor in determining toxicity and pathogenesis for a wide array of environmental factors is oxidative stress. Here, we created the oxidative environment with 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH) and consequent cardiac remodeling in chick embryos. The metabolite fingerprint of heart tissue was obtained from Fourier transform infrared (FTIR) spectroscopic analysis.

View Article and Find Full Text PDF

Since there is no precise therapy for treating vascular calcification by directly targeting the vascular wall, we aim to unveil novel drug targets through mining the molecular effect of a high phosphate environment on vascular cells through computational methods. Here, we hypothesize that manipulation of the vascular pathogenic network by small molecule therapeutics predicted from prior knowledge might offer great promise. With this, we intend to understand the publicly available transcriptomic data of vascular smooth muscle cells and endothelial cells exposed to the high phosphate induced vascular calcification milieu and to re-examine the above published experiments for reasons different from those examined in the previous studies through multilevel systems biological understanding.

View Article and Find Full Text PDF