Publications by authors named "Shaina N Porter"

Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for β-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here, we compare combined CRISPR-Cas9 editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. Dual targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two single guide RNAs (sgRNAs) resulted in superior HbF induction, including in sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers.

View Article and Find Full Text PDF

Editing the +58 region of the BCL11A erythroid enhancer has shown promise in treating β-globin disorders. To address variations in fetal hemoglobin (HbF) response, we investigated editing both +58 and +55 enhancers. Rhesus macaques transplanted with edited hematopoietic stem/progenitor cells (HSPCs) following busulfan conditioning exhibited durable, high-level (∼90%) editing frequencies post transplantation with sustained HbF reactivation over 4 years, without hematological perturbations.

View Article and Find Full Text PDF

Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS.

View Article and Find Full Text PDF

Inducing fetal hemoglobin (HbF) in red blood cells can alleviate β-thalassemia and sickle cell disease. We compared five strategies in CD34 hematopoietic stem and progenitor cells, using either Cas9 nuclease or adenine base editors. The most potent modification was adenine base editor generation of γ-globin -175A>G.

View Article and Find Full Text PDF
Article Synopsis
  • Gene editing of specific enhancers to boost fetal hemoglobin (HbF) is being explored as a therapy for β-hemoglobinopathy, but variability in editing effects raises concerns about safety and effectiveness.
  • The research compared CRISPR-Cas9 techniques targeting two enhancers (+58 and +55), which showed better HbF induction, particularly in sickle cell disease patient cells, by disrupting critical motifs necessary for gene expression.
  • It was found that editing hematopoietic stem cells without prior cell culture reduces harmful unwanted outcomes (like genetic deletions) while still allowing effective gene targeting, suggesting a safer approach for gene therapy delivery.
View Article and Find Full Text PDF

We previously reported a specific inverse agonist (SPA70) of the nuclear receptor pregnane X receptor (PXR). However, derivatization of SPA70 yielded only agonists and neutral antagonists, suggesting that inverse agonism of PXR is difficult to achieve. Therefore, we sought to design proteolysis targeting chimeras (PROTACs) aimed at inducing PXR degradation.

View Article and Find Full Text PDF

Chronic lymphoproliferative disorder of natural killer cells (CLPD-NK) is characterized by clonal expansion of natural killer (NK) cells where the underlying genetic mechanisms are incompletely understood. In the present study, we report somatic mutations in the chemokine gene CCL22 as the hallmark of a distinct subset of CLPD-NK. CCL22 mutations were enriched at highly conserved residues, mutually exclusive of STAT3 mutations and associated with gene expression programs that resembled normal CD16/CD56 NK cells.

View Article and Find Full Text PDF

Pediatric sarcomas represent a heterogeneous group of malignancies that exhibit variable response to DNA-damaging chemotherapy. Schlafen family member 11 protein (SLFN11) increases sensitivity to replicative stress and has been implicated as a potential biomarker to predict sensitivity to DNA-damaging agents (DDA). SLFN11 expression was quantified in 220 children with solid tumors using IHC.

View Article and Find Full Text PDF

Hereditary persistence of fetal hemoglobin (HPFH) ameliorates β-hemoglobinopathies by inhibiting the developmental switch from γ-globin (HBG1/HBG2) to β-globin (HBB) gene expression. Some forms of HPFH are associated with γ-globin promoter variants that either disrupt binding motifs for transcriptional repressors or create new motifs for transcriptional activators. How these variants sustain γ-globin gene expression postnatally remains undefined.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is caused by a mutation in the β-globin gene HBB. We used a custom adenine base editor (ABE8e-NRCH) to convert the SCD allele (HBB) into Makassar β-globin (HBB), a non-pathogenic variant. Ex vivo delivery of mRNA encoding the base editor with a targeting guide RNA into haematopoietic stem and progenitor cells (HSPCs) from patients with SCD resulted in 80% conversion of HBB to HBB.

View Article and Find Full Text PDF

USP7, which encodes a deubiquitylating enzyme, is among the most frequently mutated genes in pediatric T-ALL, with somatic heterozygous loss-of-function mutations (haploinsufficiency) predominantly affecting the subgroup that has aberrant TAL1 oncogene activation. Network analysis of > 200 T-ALL transcriptomes linked USP7 haploinsufficiency with decreased activities of E-proteins. E-proteins are also negatively regulated by TAL1, leading to concerted down-regulation of E-protein target genes involved in T-cell development.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy has had limited success in early-phase clinical studies for solid tumors. Lack of efficacy is most likely multifactorial, including a limited array of targetable antigens. We reasoned that targeting the cancer-specific extra domain B (EDB) splice variant of fibronectin might overcome this limitation because it is abundantly secreted by cancer cells and adheres to their cell surface.

View Article and Find Full Text PDF

With advancements in gene editing technologies, our ability to make precise and efficient modifications to the genome is increasing at a remarkable rate, paving the way for scientists and clinicians to uniquely treat a multitude of previously irremediable diseases. CRISPR-Cas9, short for clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9, is a gene editing platform with the ability to alter the nucleotide sequence of the genome in living cells. This technology is increasing the number and pace at which new gene editing treatments for genetic disorders are moving toward the clinic.

View Article and Find Full Text PDF

Gene editing of the erythroid-specific BCL11A enhancer in hematopoietic stem and progenitor cells (HSPCs) from patients with sickle cell disease (SCD) induces fetal hemoglobin (HbF) without detectable toxicity, as assessed by mouse xenotransplant. Here, we evaluated autologous engraftment and HbF induction potential of erythroid-specific BCL11A enhancer-edited HSPCs in 4 nonhuman primates. We used a single guide RNA (sgRNA) with identical human and rhesus target sequences to disrupt a GATA1 binding site at the BCL11A +58 erythroid enhancer.

View Article and Find Full Text PDF

Fetal and adult hematopoietic stem cells (HSCs) have distinct proliferation rates, lineage biases, gene expression profiles, and gene dependencies. Although these differences are widely recognized, it is not clear how the transition from fetal to adult identity is coordinated. Here we show that murine HSCs and committed hematopoietic progenitor cells (HPCs) undergo a gradual, rather than precipitous, transition from fetal to adult transcriptional states.

View Article and Find Full Text PDF

Stress granules (SGs) are membrane-less ribonucleoprotein condensates that form in response to various stress stimuli via phase separation. SGs act as a protective mechanism to cope with acute stress, but persistent SGs have cytotoxic effects that are associated with several age-related diseases. Here, we demonstrate that the testis-specific protein, MAGE-B2, increases cellular stress tolerance by suppressing SG formation through translational inhibition of the key SG nucleator G3BP.

View Article and Find Full Text PDF

Z-DNA-binding protein 1 (ZBP1) is an innate immune sensor of nucleic acids that regulates host defense responses and development. ZBP1 activation triggers inflammation and pyroptosis, necroptosis, and apoptosis (PANoptosis) by activating receptor-interacting Ser/Thr kinase 3 (RIPK3), caspase-8, and the NLRP3 inflammasome. ZBP1 is unique among innate immune sensors because of its N-terminal Zα1 and Zα2 domains, which bind to nucleic acids in the Z-conformation.

View Article and Find Full Text PDF

Alternative polyadenylation (APA) contributes to transcriptome complexity by generating mRNA isoforms with varying 3' UTR lengths. APA leading to 3' UTR shortening (3' US) is a common feature of most cancer cells; however, the molecular mechanisms are not understood. Here, we describe a widespread mechanism promoting 3' US in cancer through ubiquitination of the mRNA 3' end processing complex protein, PCF11, by the cancer-specific MAGE-A11-HUWE1 ubiquitin ligase.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores using CRISPR/Cas9 technology to disrupt gene regulatory elements that suppress the expression of fetal hemoglobin (HbF), which could be a new treatment for sickle cell disease and β-thalassemia.
  • Researchers successfully targeted the BCL11A protein, which blocks γ-globin gene expression, and induced significant levels of HbF in modified hematopoietic cells.
  • The modified cells showed no harmful off-target effects and maintained healthy differentiation into various blood cell types, suggesting the approach could be a safe and effective treatment for hemoglobin-related disorders.
View Article and Find Full Text PDF

MLL rearrangements are translocation mutations that cause both acute lymphoblastic leukemia and acute myeloid leukemia (AML). These translocations can occur as sole clonal driver mutations in infant leukemias, suggesting that fetal or neonatal hematopoietic progenitors may be exquisitely sensitive to transformation by MLL fusion proteins. To test this possibility, we used transgenic mice to induce one translocation product, , during fetal, neonatal, juvenile and adult stages of life.

View Article and Find Full Text PDF

Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field.

View Article and Find Full Text PDF

Somatic genetic alterations of IKZF1, which encodes the lymphoid transcription factor IKAROS, are common in high-risk B-progenitor acute lymphoblastic leukemia (ALL) and are associated with poor prognosis. Such alterations result in the acquisition of stem cell-like features, overexpression of adhesion molecules causing aberrant cell-cell and cell-stroma interaction, and decreased sensitivity to tyrosine kinase inhibitors. Here we report coding germline IKZF1 variation in familial childhood ALL and 0.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) cells often co-opt normal hematopoietic stem cell (HSC) programs to drive neoplastic proliferation, and HSC-related gene expression signatures have been identified as biomarkers for poor prognosis in AML patients. We sought to identify new regulators of HSCs and AML cells from previously published HSC and leukemia stem cell (LSC) gene expression signatures. We identified PRKCH (protein kinase C eta) as a gene that is highly expressed in both mouse and human HSCs, as well as in LSCs from independent cohorts of AML patients.

View Article and Find Full Text PDF

The Internal Tandem Duplication () mutation is common in adult acute myeloid leukemia (AML) but rare in early childhood AML. It is not clear why this difference occurs. Here we show that and cooperating mutations cause hematopoietic stem cell depletion and myeloid progenitor expansion during adult but not fetal stages of murine development.

View Article and Find Full Text PDF

Pten negatively regulates the phosphatidylinositol 3-kinase (PI3K) pathway and is required to maintain quiescent adult hematopoietic stem cells (HSCs). Pten has been proposed to regulate HSCs cell autonomously and non-cell autonomously, but the relative importance of each mechanism has not been directly tested. Furthermore, the cytokines that activate the PI3K pathway upstream of Pten are not well defined.

View Article and Find Full Text PDF