Publications by authors named "Shaimaa Mahmoud"

Objectives: To investigate the effectiveness of nebulized magnesium sulfate in treating persistent pulmonary hypertension of newborn (PPHN).

Methods: Twenty-eight mechanically ventilated term neonates with severe PPHN were randomized into two groups: NebMag group (n = 14), who receiving nebulized isotonic magnesium (1024 mg/h), and IVMag group (n = 14), who received intravenous magnesium (200 mg/kg over 30 min, followed by 50 mg/kg/h). The study time frame was 24 h.

View Article and Find Full Text PDF

Nucleotide-binding, leucine-rich repeat containing X1 (NLRX1) is a mitochondria-located innate immune sensor that inhibits major pro-inflammatory pathways such as type I interferon and nuclear factor-κB signaling. We generated a novel, spontaneous, and rapidly progressing mouse model of multiple sclerosis (MS) by crossing myelin-specific T-cell receptor (TCR) transgenic mice with Nlrx1-/- mice. About half of the resulting progeny developed spontaneous experimental autoimmune encephalomyelitis (spEAE), which was associated with severe demyelination and inflammation in the central nervous system (CNS).

View Article and Find Full Text PDF

Uptake of glutamate from the extracellular space and glutamate release to neurons are two major processes conducted by astrocytes in the central nervous system (CNS) that protect against glutamate excitotoxicity and strengthen neuronal firing, respectively. During inflammatory conditions in the CNS, astrocytes may lose one or both of these functions, resulting in accumulation of the extracellular glutamate, which eventually leads to excitotoxic neuronal death, which in turn worsens the CNS inflammation. NLRX1 is an innate immune NOD-like receptor that inhibits the major inflammatory pathways.

View Article and Find Full Text PDF

Glutamate is one of the most prevalent neurotransmitters released by excitatory neurons in the central nervous system (CNS); however, residual glutamate in the extracellular space is, potentially, neurotoxic. It is now well-established that one of the fundamental functions of astrocytes is to uptake most of the synaptically-released glutamate, which optimizes neuronal functions and prevents glutamate excitotoxicity. In the CNS, glutamate clearance is mediated by glutamate uptake transporters expressed, principally, by astrocytes.

View Article and Find Full Text PDF
Article Synopsis
  • The study used automated software to analyze 24-hour recordings of mice over 11 days, allowing researchers to identify and cluster 33 different mouse activities into novel behavioral patterns.
  • The activities were grouped into 5 clusters and 6 factors based on statistical methods, comparing behaviors of mice in social isolation with those that experienced intermittent socialization.
  • This research establishes a baseline for normal behaviors in C57Bl/6J mice, which could be invaluable for future studies in disease models, neuroinflammation, or drug testing, and it also outlines the acclimatization needed for accurate 24-hour behavior recordings.
View Article and Find Full Text PDF

Although the etiology of multiple sclerosis (MS) remains enigmatic, the role of T cells is unquestionably central in this pathology. Immune cells respond to pathogens and danger signals via pattern-recognition receptors (PRR). Several reports implicate , an intracellular PRR, in the development of a mouse MS-like disease, called Experimental Autoimmune Encephalomyelitis (EAE).

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is the most common childhood form of muscular dystrophy. The incidence of cardiomyopathy in DMD increases with age, so its early detection is important because institution of cardioprotective medical therapies may slow adverse remodeling and attenuate heart failure symptoms in these patients.

Objective: To assess the cardiac functions in children clinically suspected to have DMD.

View Article and Find Full Text PDF

Recent studies have reported that many proteases, besides the canonical α-, β-, and γ-secretases, cleave the amyloid precursor protein (APP) and modulate β-amyloid (Aβ) peptide production. Moreover, specific APP isoforms contain Kunitz protease-inhibitory domains, which regulate the proteolytic activity of serine proteases. This prompted us to investigate the role of matriptase, a member of the type II transmembrane serine protease family, in APP processing.

View Article and Find Full Text PDF

Beta-ketothiolase deficiency (mitochondrial acetoacetyl-CoA thiolase (T2) deficiency) is an inherited disease of isoleucine catabolism and ketone body utilization caused by ACAT1 mutations. We identified ten Indian patients who manifested with ketoacidotic episodes of variable severity. The patients showed increased urinary excretion of isoleucine-catabolic intermediates: 2-methyl-3-hydroxybutyrate, 2-methylacetoacetate, and tiglylglycine.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) is a mouse model that reproduces cardinal signs of clinical, histopathological, and immunological features found in Multiple Sclerosis (MS). Mast cells are suggested to be involved in the main inflammatory phases occurring during EAE development, possibly by secreting several autacoids and proteases. Among the latter, the chymase mouse mast cell protease 4 (mMCP-4) can contribute to the inflammatory response by producing endothelin-1 (ET-1).

View Article and Find Full Text PDF