Background: Long-term success of implant restoration depends on many factors one of them is the sufficient implant stability which is lowered in compromised bone density sites such as the maxilla as it is categorized as type III & IV bone, so searching for a new innovation and updates in implant material and features is very mandatory. So, the aim of this study was to compare between two implant materials (roxolid and traditional titanium) on the primary and secondary stability of implant retained maxillary overdenture.
Methods: Eighteen completely edentulous patients were selected.
Statement Of Problem: Traditional removable partial denture (RPD) manufacture is being phased out in favor of computer-aided design and computer-aided manufacturing (CAD-CAM) techniques and rapid prototyping (RP), which provide more efficient methods of producing RPD frameworks. However, studies comparing the accuracy and surface roughness of these approaches on RPD frameworks are still scarce.
Purpose: The purpose of this in vitro study was to evaluate the accuracy and surface roughness of class I cobalt chromium (Co-Cr) removable partial denture frameworks digitally constructed using 2 different CAD-CAM technologies: direct milling (DM) and selective laser melting (SLM).
Purpose: To evaluate the accuracy and adaptation of BioHPP removable partial denture frameworks constructed from milling vs the pressing technique.
Materials And Methods: This in vitro study was applied on an educational maxillary stone model with bilateral bounded saddles. Two different manufacturing techniques were used, and thus two groups were defined: (1) the pressed group, in which 20 BioHPP frameworks were constructed by milling a castable resin that was pressed into BioHPP using the lost wax technique; and (2) the milled group, in which 20 BioHPP frameworks were constructed directly by milling the BioHPP blanks.
Aims: This study was conducted to evaluate the adaptation of maxillary complete denture designed by two different open computer-aided design software programs (3Shape and Exocad) using Geomagic surface matching software.
Settings And Design: This was a nonrandomized crossover clinical trial.
Materials And Methods: Twenty completely edentulous patients were selected in this study.