Publications by authors named "Shaili Sharma"

Aggrecan, the major proteoglycan in cartilage, serves to protect cartilage tissue from damage and degradation during the progression of osteoarthritis (OA). In cartilage extracellular matrix (ECM) aggrecan exists in an aggregate composed of several aggrecan molecules that bind to a single filament of hyaluronan. Each molecule of aggrecan is composed of a protein core and glycosaminoglycan sides chains, the latter of which provides cartilage with the ability to retain water and resist compressive loads.

View Article and Find Full Text PDF

Purpose: Vitreous liquefaction and subsequent posterior vitreous detachment can lead to several sight-threatening diseases, including retinal detachment, macular hole and macular traction syndrome, nuclear cataracts, and possibly, open-angle glaucoma. In this study, we tested the ability of three novel synthetic chondroitin sulfate proteoglycan mimics to preserve the structure and physical properties of enzymatically-degraded bovine vitreous.

Methods: Chondroitin sulfate proteoglycan mimics, designed to bind to type II collagen, hyaluronic acid, or both, were applied to trypsin- or collagenase-treated bovine vitreous in situ and in vitro.

View Article and Find Full Text PDF

Aggrecan, a major macromolecule in cartilage, protects the extracellular matrix (ECM) from degradation during the progression of osteoarthritis (OA). However, aggrecan itself is also susceptible to proteolytic cleavage. Here, the use of a biomimetic proteoglycan (mAGC) is presented, which functionally mimics aggrecan but lacks the known cleavage sites, protecting the molecule from proteolytic degradation.

View Article and Find Full Text PDF

Unlabelled: Cell-penetrating anti-inflammatory peptide KAFAKLAARLYRKALARQLGVAA (KAFAK) has the ability to suppress pro-inflammatory cytokines TNF-α and IL-6 when released from degradable and non-degradable poly(NIPAm-AMPS) nanoparticles. In vitro human macrophage model with THP1 human monocytes and ex vivo bovine knee cartilage tissue both showed a dose-dependent suppression of pro-inflammatory cytokines when treated with KAFAK-loaded poly(NIPAm-AMPS) nanoparticles. When bovine knee cartilage explants were treated with KAFAK-loaded poly(NIPAm-AMPS) nanoparticles, rapid and highly selective targeting of only damaged tissue occurred.

View Article and Find Full Text PDF

Biomimetic scaffolds that promote regeneration and resist proteolysis are required as a tissue engineering solution to repair or replace a broad range of diseased tissues. Native corrosive environments, such as the richly enzymatic milieu of diseased articular cartilage, degrade the local extracellular matrix structure, so an implantable replacement must both replicate the healthy structure and demonstrate substantial proteolytic immunity, yet promote regeneration, if long-term functional success is to be achieved. Here, we combine magnetically aligned collagen with peptidoglycans, biosynthetic molecules that mimic proteoglycan activity but lack core proteins susceptible to proteases, to develop cartilage scaffold analogs with tailored functionality.

View Article and Find Full Text PDF