Designing mimetic of the interface functional groups of known receptor-ligand complexes is an attractive strategy for developing potential therapeutic agents that interfere with target protein-protein interactions. The CD80/CD86-CD28/CD152 costimulatory interactions transmit signals for CD4(+) T cell activation and suppression and are critically involved in the initiation, progression, and reactivation of the immunopathology in multiple sclerosis. Differences in the pattern, levels, and kinetics of expression of CD80/CD86 molecules in conjunction with differences in the strength of the signals delivered upon binding CD28 or CD152 determine the outcome of the immune response.
View Article and Find Full Text PDFObjectives: The objective of this study was to examine the nature of interaction between cyclooxygenase-2 inhibitor meloxicam and inducible nitric oxide synthase inhibitor aminoguanidine in formalin-induced nociception in mice and the possible therapeutic advantage.
Methods: Antinociceptive effect of meloxicam (1, 3, 10 and 30 mg/kg, oral) and aminoguanidine (10, 30, 100 and 300 mg/kg, oral) and their combinations was examined in formalin-induced paw licking model in mice. Analysis of variance and isobolographic method were employed to identify the nature of antinociceptive interaction.
Objectives: The objective of this study was to examine the effects of rofecoxib, meloxicam, both cyclooxygenase-2 (COX-2) inhibitors and aminoguanidine hydrochloride, an inducible nitric oxide synthase (iNOS) inhibitor and their combinations in neuropathic pain in rats.
Methods: Neuropathy was induced by chronic constriction injury (CCI) of right sciatic nerve under ketamine anesthesia in rats. Effect of ED(50) of aminoguanidine hydrochloride, rofecoxib and meloxicam administered orally was investigated using behavioral tests.
This study was conducted to examine the role of nitric oxide (NO) in peripheral neuropathy induced by chronic constriction injury of sciatic nerve of rats by using NO precursor, NO donors and nitric oxide synthase (NOS) inhibitors. Chronic constriction injury of sciatic nerve of rats resulted in peripheral neuropathy as confirmed by nociceptive behavioural tests using mechanical, thermal and cold allodynia. NO precursor, L-arginine and NO donors sodium nitroprusside, S-nitroso-N-acetylpenicillamine potentiated the hyperalgesia and allodynia significantly suggesting proalgesic effect in neuropathic rats.
View Article and Find Full Text PDFObjectives: The objectives of this study were to examine the role of reactive oxygen species and oxidative stress in peripheral neuropathy and behavioural pain responses in experimentally induced chronic constriction injury (CCI) of sciatic nerve of rat. Effect of N-acetyl-L-cysteine (NAC) administered intraperitoneally, was also investigated on CCI-induced neuropathic pain in rats.
Methods: Neuropathy was induced by CCI of the right sciatic nerve in ketamine anaesthetized rats.
Interaction studies with inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) inhibitor have been conducted to assess the nature of interaction and the possible therapeutic advantage. The interaction between meloxicam--a selective COX-2 inhibitor--and aminoguanidine hydrochloride--a selective iNOS inhibitor-- was examined in carrageenan-induced paw edema in rats. Appropriate statistical method was applied to detect the nature of anti-inflammatory interaction.
View Article and Find Full Text PDFStudies with inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 inhibitor were conducted to assess their synergistic antinociceptive effect and possible therapeutic advantage. The antinociceptive interaction of rofecoxib, a selective cyclooxygenase-2 inhibitor, with aminoguanidine hydrochloride, a selective iNOS inhibitor, was examined in the formalin-induced paw-licking model in mice. Analysis of variance (ANOVA) and the isobolographic method were used to identify the nature of the antinociceptive interaction.
View Article and Find Full Text PDF