Precise estimation of individual radiation dose utilizing biomaterials (fingernail, bone, and tooth) is very challenging due to their complex sample processing. Despite, tooth enamel, the most mineralized tissue of tooth is used for this purpose due to its high radiation sensitivity and ability to produce radiation induced long lived CO radicals. However, human teeth are not always available, and invasive nature of sample collection adds to the complexity making dose estimation difficult.
View Article and Find Full Text PDFBackground: Chloroplast genomes provide insufficient phylogenetic information to distinguish between closely related sugarcane cultivars, due to the recent origin of many cultivars and the conserved sequence of the chloroplast. In comparison, the mitochondrial genome of plants is much larger and more plastic and could contain increased phylogenetic signals. We assembled a consensus reference mitochondrion with Illumina TruSeq synthetic long reads and Oxford Nanopore Technologies MinION long reads.
View Article and Find Full Text PDFBackground: Inverse relationship between metabolic syndrome (MetS) and 25-hydroxyvitamin D (25(OH) D) levels is controversial. Hypovitaminosis-D has long been suspected as a risk factor for glucose intolerance.
Aim: A randomized double blind placebo controlled study to evaluate effects of vitamin D supplementation on insulin resistance in subjects with hypovitaminosis-D and MetS.
Background: Image registration (IR) is an important process of developing a spatial relationship between pre-operative data and the physical patient in the operation theatre. Current IR techniques for Computer Assisted Orthopaedic Surgery (CAOS) are time consuming and costly. There is a need to automate and accelerate this process.
View Article and Find Full Text PDFIn a genome context, sugarcane is a classic orphan crop, in that no genome and only very few genes have been assembled. We have devised a novel exome assembly methodology that has allowed us to assemble and characterize 49 genes that serve as herbicide targets, safener interacting proteins, and members of herbicide detoxification pathways within the sugarcane genome. We have structurally modelled the products of each of these genes, as well as determining allelic, genomic, and RNA-Seq based polymorphisms for each gene.
View Article and Find Full Text PDFFunctionalized and fully characterized graphene-based lubricant additives are potential 2D materials for energy-efficient tribological applications in machine elements, especially at macroscopic contacts. Two different reduced graphene oxide (rGO) derivatives, terminated by hydroxyl and epoxy-hydroxyl groups, were prepared and blended with two different molecular weights of polyethylene glycol (PEG) for tribological investigation. Epoxy-hydroxyl-terminated rGO dispersed in PEG showed significantly smaller values of the friction coefficient.
View Article and Find Full Text PDFElectrospun nanofibres have been shown to exhibit extracellular matrix (ECM)-like characteristics required for tissue engineering in terms of porosity, flexibility, fibre organization and strength. This study focuses on developing novel cellulose acetate phthalate (CAP) scaffolds by electrospinning for establishing 3-D chondrocyte and neuronal cultures. Five solvent combinations were employed in fabricating the fibres, namely, acetone/ethanol (9:1), dimethylformamide/tetrahydrofuran/acetone (3:3:4), tetrahydrofuran/acetone (1:1), tetrahydrofuran/ethanol (1:1) and chloroform/methanol (1:1).
View Article and Find Full Text PDFAcetolactate synthase (ALS) catalyzes the first portion of the biosynthetic pathway leading to the generation of branched-chain amino acids. As such it is essential for plant health and is a major target for herbicides. ALS is a very poorly characterized molecule in sugarcane.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
April 2014
Purpose: To develop a mechanical model with which to investigate the relationship between the crimping morphology of collagen fibrils and the nonlinear mechanical behavior of the cornea.
Methods: Uniaxial tensile experiments were performed with corneal strips to test their mechanical behavior. A constitutive model was constructed based on the Gaussian-distributed morphology of crimped collagen fibrils.
An analytical methodology is proposed based on constant ratio and absorbance correction methods to quantify sodium carbonate, Na₂CO₃ (1450 cm⁻¹), and sodium bicarbonate, NaHCO₃ (1000 cm⁻¹, 1923 cm⁻¹), in solid mixtures using Fourier transform infrared (FT-IR) spectroscopy. Potassium ferricyanide, K₃Fe(CN)₆ (2117cm⁻¹), was used as an internal standard to get characteristic parameters. NaHCO₃ was quantified using the constant ratio method.
View Article and Find Full Text PDF