Publications by authors named "Shailee V Tiwari"

A novel series of substituted thiazolo[5,4-b]pyridine analogues were rationally designed and synthesized via a multi-step synthetic pathway, including Suzuki cross-coupling reaction. The anticancer activity of all forty-five synthesized derivatives was evaluated against HCC827, H1975, and A549 cancer cell lines utilizing the standard MTT assay. A significant number of the thiazolo[5,4-b]pyridine derivatives exhibited potent anticancer activity.

View Article and Find Full Text PDF

A series of novel l-ascorbic acid derivatives bearing aryl and alkyl sulfonate substituents were synthesized and characterized. In vitro anticancer evaluation against MCF-7 (breast) and A-549 (lung) cancer cell lines revealed potent activity for most of the compounds, with 2b being equipotent to the standard drug colchicine against MCF-7 (IC = 0.04 μM).

View Article and Find Full Text PDF

Here in, we report the design, synthesis and in vitro anticancer activity of a novel series of 24 quinoline analogues of substituted amide and sulphonamide derivatives. The anticancer activity of the synthesised compounds was evaluated against the HCC827, H1975 (L858R/T790 M), A549 (WT EGFR), A-549 and BEAS-2B cell lines. The majority of quinoline compounds demonstrated a significant cytotoxic effect.

View Article and Find Full Text PDF

Targeting kinases with oncogenic driver mutations in malignancies with allosteric kinase inhibitors is a promising new treatment technique. EGFR inhibitors targeting the L858R/T790M/C797S mutation bearing thiazolidine-4-one scaffold were discovered, optimized, synthesized, and biologically evaluated. According to and studies, compounds and resulted to be highly potent with IC values of 120 nM and 134 nM and good selectivity.

View Article and Find Full Text PDF

For developing novel therapeutic agents with good anticancer activities, a series of novel pyridine-pyrimidine hybrid phosphonate derivatives4(a-q) were synthesized by the Kabachnik-Fields method using CAN as catalyst. The compound 4o exhibited the most potent anticancer activity with an IC value of 13.62 μM, 17.

View Article and Find Full Text PDF

Two different schemes of novel substituted quinoline derivatives were designed and synthesized via simple reaction steps and conditions. A comparative molecular docking study was carried out on two different types of EGFR enzymes which include wild-type (PDB: 4I23) and T790M mutated (PDB: 2JIV) respectively. Compounds were also validated upon T790M/C797S mutated (PDB ID: 5D41) EGFR enzyme at the allosteric binding site.

View Article and Find Full Text PDF

Novel non-camptothecin (non-CPT) class of conformationally constrained, hitherto unknown 7,12-dihydrodibenzo[b,h][1,6] naphthyridine and 7H-Chromeno[3,2-c] quinoline derivatives have been designed, synthesized and evaluated for anti-cancer activity. In vitro anti-proliferation evaluation against human cancer cell lines (A549 and MCF-7) exhibited significant cytotoxicity. Among the derivatives (8-24), 8 (IC 0.

View Article and Find Full Text PDF

A library of novel flavonoid derivatives with diverse heterocyclic groups was designed and efficiently synthesized. Structures of the newly synthesized compounds 4a-i and 8a-l have been characterized by H NMR, C NMR, MS and elemental analysis. Anticancer activities were evaluated against MCF-7, A549, HepG2 and MCF-10A by MTT based assay.

View Article and Find Full Text PDF

New substituted quinoline derivatives were designed and synthesized via a five-step modified Suzuki coupling reaction. A comparative molecular docking study was carried out on two different types of EGFR enzymes which include wild-type (PDB: 4I23) and T790M mutated (PDB: 2JIV) respectively. Compounds were also validated upon T790M/C797S mutated (PDB ID: 5D41) EGFR enzyme at the allosteric binding site.

View Article and Find Full Text PDF

In search of new active molecules against MCF-7, A549 and HepG2, tetrazole based pyrazoline and isoxazoline derivatives under both conventional and ultrasonic irradiation method were designed and efficiently synthesized. Structures of newly synthesized compounds 5a-h and 6a-h were characterized by H NMR, C NMR, MS and elemental analysis. Several derivatives were found to be excellent cytotoxic against MCF-7, A549 and HepG2 cell lines characterized by lower IC values (0.

View Article and Find Full Text PDF

A series of new sulfonamide analogues of 6/7-aminoflavones were synthesized by using molecular hybridization approach. These new sulfonamide analogues were screened for antiproliferative activity against human hepatocellular carcinoma (HepG-2), human lung cancer cell line (A-549), human colorectal adenocarcinoma (Caco-2) cancer cell lines. Compounds 5p, 5q, 5t, 5v, 5w and 5x exhibited good anticancer activity against selected cancer cell lines.

View Article and Find Full Text PDF

Series of novel N-benzyl derivatives of 6-aminoflavone (9a-n) were synthesized and evaluated for anticancer and topoisomerase II enzyme inhibition activity. All the synthesized compounds were screened for in vitro anticancer activity against human breast cancer cell line (MCF-7) and human lung cancer cell line (A-549). Among the synthesized compounds, 9f and 9g were found to be the most potent anticancer agents against human breast cancer cell line (MCF-7) with IC values of 9.

View Article and Find Full Text PDF

A search for potent antiproliferative agents has prompted to design and synthesize aryloxy bridged and amide linked dimeric 1,2,3-triazoles (7a-j) by using 1,3-dipolar cycloaddition reaction between 2-azido-N-phenylacetamides (4a-e) and bis(prop-2-yn-1-yloxy)benzenes (6a-b) via copper (I)-catalyzed click chemistry approach with good to excellent yields. All the newly synthesized compounds have been screened for their in vitro antiproliferative activities against two human cancer cell lines. The compounds 7d, 7e, 7h, 7i and 7j have revealed promising antiproliferative activity against human breast cancer cell line (MCF-7), whereas, the compounds 7a, 7b, 7c, 7i and 7j were observed as potent antiproliferative agents against human lung cancer cell line (A-549).

View Article and Find Full Text PDF

The work reports the facile synthesis of novel α-aminophosphonate derivatives coupled with indole-2,3-dione moieties, namely the diethyl(substituted phenyl/heteroaryl)(2-(2-oxoindolin-3-ylidene)hydrazinyl)methylphosphonates derivatives (⁻). One-pot three component Kabachnik-Fields reactions were used to synthesize these derivatives. The reaction was carried out at room temperature by stirring in presence of ceric ammonium nitrate (CAN) as a green catalyst.

View Article and Find Full Text PDF

Background: Regardless of recent advances in the development of clinically authorized anticancer agents the number of deaths due to cancer is increasing day by day all over the world. The aim of this research work is to synthesis novel anticancer agents.

Method: In this work, a new series of diethyl ((1H-indole-3-yl)((5-phenyl-1,3,4-thiadiazole-2-yl)amino) methyl)phosphonate derivatives 6(a-j) were designed and synthesized in Ultrasound by green protocol using Kabachnik-Fields reaction.

View Article and Find Full Text PDF

Herein, we report an environmentally friendly, rapid, and convenient ionic liquid ([Et₃NH][HSO₄])-promoted facile synthesis of ethyl 4-(6-substituted-4-oxo-4H-chromen-3-yl)-6-methyl-2-thioxo/oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives (-) and 4-(6-substituted-4-oxo-4H-chromen-3-yl)-6-methyl-2-thioxo/oxo-1,2,3,4-tetrahydropyrimidine-5- carbohydrazide derivatives (-). All the synthesized derivatives (-) and (-) were evaluated for their antifungal and antibacterial activity, by method recommended by National Committee for Clinical Laboratory Standards (NCCLS). The compound bearing a fluoro group on the chromone ring and oxygen and a hydrazino group (-NHNH₂) on the pyrimidine ring, was found to be the most potent antibacterial compound amongst the synthesized derivatives.

View Article and Find Full Text PDF

The work reports the synthesis under solvent-free condition using the ionic liquid [Et₃NH][HSO₄] as a catalyst of fifteen novel 3-((dicyclohexylamino)(substituted phenyl/heteryl)-methyl)-4-hydroxy-2-chromen-2-onederivatives - as potential antimicrobial agents. The structures of the synthesized compounds were confirmed by IR, ¹H-NMR, C-NMR, mass spectral studies and elemental analyses. All the synthesized compounds were evaluated for their antifungal and antibacterial activity.

View Article and Find Full Text PDF

In the present work, 12 novel Schiff's bases containing a thiadiazole scaffold and benzamide groups coupled through appropriate pharmacophore were synthesized. These moieties are associated with important biological properties. A facile, solvent-free synthesis of a series of novel (-) -((5-(substituted methylene amino)-1,3,4-thiadiazol-2-yl)methyl) benzamide was carried out under microwave irradiation.

View Article and Find Full Text PDF

Herein, we report an environmentally friendly, rapid, and convenient one-pot ultrasound-promoted synthesis of 5-amino-2-(4-chlorophenyl)-7-substituted phenyl-8,8a-dihydro-7H-(1,3,4)thiadiazolo(3,2-α)pyrimidine-6-carbonitrile derivatives. The in-vitro anticancer activities of these compounds were evaluated against four human tumor cell lines. Among all the synthesized derivatives, compound 4i, which has substituent 3-hydroxy-4-methoxyphenyl is found to have the highest GI50 value of 32.

View Article and Find Full Text PDF