Publications by authors named "Shailaja Akella"

Influenced by non-stationary factors such as brain states and behavior, neurons exhibit substantial response variability even to identical stimuli. However, it remains unclear how their relative impact on neuronal variability evolves over time. To address this question, we designed an encoding model conditioned on latent states to partition variability in the mouse visual cortex across internal brain dynamics, behavior, and external visual stimulus.

View Article and Find Full Text PDF

Distinct dynamics in different cortical layers are apparent in neuronal and local field potential (LFP) patterns, yet their associations in the context of laminar processing have been sparingly analyzed. Here, we study the laminar organization of spike-field causal flow within and across visual (V4) and frontal areas (PFC) of monkeys performing a visual task. Using an event-based quantification of LFPs and a directed information estimator, we found area and frequency specificity in the laminar organization of spike-field causal connectivity.

View Article and Find Full Text PDF

Computational models of neural activity at the meso-scale suggest the involvement of discrete oscillatory bursts as constructs of cognitive processing during behavioral tasks. Classical signal processing techniques that attempt to infer neural correlates of behavior from meso-scale activity employ spectral representations of the signal, exploiting power spectral density techniques and time-frequency (T-F) energy distributions to capture band power features. However, such analyses demand more specialized methods that incorporate explicitly the concepts of neurophysiological signal generation and time resolution in the tens of milliseconds.

View Article and Find Full Text PDF

Neuromodulations as observed in the extracellular electrical potential recordings obtained from Electroencephalograms (EEG) manifest as organized, transient patterns that differ statistically from their featureless noisy background. Leveraging on this statistical dissimilarity, we propose a non-iterative robust classification algorithm to isolate, in time, these neuromodulations from the temporally disorganized but structured background activity while simultaneously incorporating temporal sparsity of the events. Specifically, we exploit the ability of correntropy to asses higher - order moments as well as imply the degree of similarity between two random variables in the joint space regulated by the kernel bandwidth.

View Article and Find Full Text PDF

Brain-Computer Interfaces (BCI) aim to bypass the peripheral nervous system to link the brain to external devices via successful modeling of decoding mechanisms. BCI based on electrocorticogram or ECoG represent a viable compromise between clinical practicality, spatial resolution, and signal quality when it comes to extracellular electrical potentials from local neuronal assemblies. Classic analysis of ECoG traces usually falls under the umbrella of Time-Frequency decompositions with adaptations from Fourier analysis and wavelets as its most prominent variants.

View Article and Find Full Text PDF

Sleep spindles result from interactions between the thalamic and cortical neurons during the NREM2 stage. Studies show that these waxing and waning episodes of field potentials may have an implied role in memory consolidation, cellular plasticity and neuronal development besides serving as important markers in several neuronal pathologies. For these reasons, accurate spindle scoring of polysomnographic signals is important and has garnered interest in automating the tedious process of scoring via visual inspection.

View Article and Find Full Text PDF