Publications by authors named "Shaikhaidarov R"

Synchronization of Bloch oscillations in small Josephson junctions (JJs) under microwave radiation, which leads to current quantization, has been proposed as an effect that is dual to the appearance of Shapiro steps. This current quantization was recently demonstrated in superconducting nanowires in a compact high-impedance environment. Direct observation of current quantization in JJs would confirm the synchronization of Bloch oscillations with microwaves and help with the realisation of the metrological current standard.

View Article and Find Full Text PDF

The a.c. Josephson effect predicted in 1962 and observed experimentally in 1963 as quantized 'voltage steps' (the Shapiro steps) from photon-assisted tunnelling of Cooper pairs is among the most fundamental phenomena of quantum mechanics and is vital for metrological quantum voltage standards.

View Article and Find Full Text PDF

We have used focused ion beam irradiation to progressively cause defects in annealed molybdenum silicide thin films. Without the treatment, the films are superconducting with critical temperature of about 1 K. We observe that both resistivity and critical temperature increase as the ion dose is increased.

View Article and Find Full Text PDF

The microwave properties of nano-scale structures are important in a wide variety of applications in quantum technology. Here we describe a low-power cryogenic near-field scanning microwave microscope (NSMM) which maintains nano-scale dielectric contrast down to the single microwave photon regime, up to 10 times lower power than in typical NSMMs. We discuss the remaining challenges towards developing nano-scale NSMM for quantum coherent interaction with two-level systems as an enabling tool for the development of quantum technologies in the microwave regime.

View Article and Find Full Text PDF

We realize the quantum regime of a surface acoustic wave (SAW) resonator by demonstrating vacuum Rabi mode splitting due to interaction with a superconducting artificial atom. Reaching the quantum regime is physically difficult and technologically challenging since SAW devices consist of large arrays of narrow metal strips. This work paves the way for realizing analogues of quantum optical phenomena with phonons and can be useful in on-chip quantum electronics.

View Article and Find Full Text PDF

Superconducting quantum systems (artificial atoms) have been recently successfully used to demonstrate on-chip effects of quantum optics with single atoms in the microwave range. In particular, a well-known effect of four wave mixing could reveal a series of features beyond classical physics, when a non-linear medium is scaled down to a single quantum scatterer. Here we demonstrate the phenomenon of quantum wave mixing (QWM) on a single superconducting artificial atom.

View Article and Find Full Text PDF

We study operation of a new device, the superconducting differential double contour interferometer (DDCI), in the application for the ultrasensitive detection of magnetic flux and for digital read out of the state of the superconducting flux qubit. DDCI consists of two superconducting contours weakly coupled by Josephson junctions. In such a device a change of the critical current, caused by an external magnetic flux or a nearby electric current, happens in a step-like manner when the angular momentum quantum number changes by one in one of the two contours.

View Article and Find Full Text PDF

The performance of a great variety of electronic devices--ranging from semiconductor transistors to superconducting qubits--is hampered by low-frequency noise with spectra proportional to 1/f. The ubiquity and negative impact of 1/f noise has motivated intensive research into its cause, and it is now believed to originate from a bath of fluctuating two-level defect states (TLSs) embedded in the material. This phenomenon is commonly described by the long-established standard tunnelling model (STM) of independent TLS.

View Article and Find Full Text PDF

We experimentally study the influence of 1-40 GHz radiation on the resistance of normal (N) mesoscopic conductors coupled to superconducting (S) loops (Andreev interferometers). At low radio-frequency (RF) amplitudes we observe the usual h/2e superconducting phase periodic resistance oscillations as a function of applied magnetic flux. We find that the oscillations acquire a π-shift with increasing RF amplitude, and consistently with this result the resistance at fixed phase is an oscillating function of the RF amplitude.

View Article and Find Full Text PDF

Using the extraordinary sensitivity of Andreev interferometers to the superconducting phase difference associated with currents, we measure the persistent current quantum states in superconducting loops interrupted by Josephson junctions. Straightforward electrical resistance measurements of the interferometers give a continuous readout of the states, allowing us to construct the energy spectrum of the quantum circuit. The probe is estimated to be more precise and faster than previous methods, and can measure the local phase difference in a wide range of superconducting circuits.

View Article and Find Full Text PDF