Publications by authors named "Shaikh Atik Badshah"

BACKGROUND Calcaneal fractures are the most common tarsal bone fractures, and account for 75% of intra-articular fractures. The purpose of this study was to compare the biomechanical stability of the anterior process locking plate combined with the percutaneous cannulated screw fixation (screw group) versus the anterior process locking plate fixation alone (plate group) for the treatment of Sanders type II calcaneal fractures using finite element analysis to provide a theoretical basis for clinical work. MATERIAL AND METHODS We established a 3D model of Sanders type II calcaneal fracture; assigned material properties to the internal fixation systems; applied loads; set up analysis criteria; analyzed the displacement of the fracture, relative displacement, stress state of bone tissue, and internal fixation; and compared mechanical stability.

View Article and Find Full Text PDF

Osteosarcoma cellular iron concentration is higher than that in normal bone cells and other cell types. High levels of cellular iron help catalyze the Fenton reaction to produce reactive oxygen species (ROS), which promotes cancer cell proliferation. Dihydroartemisinin (DHA), a classic anti-malarial drug, kills plasmodium through iron-dependent ROS generation.

View Article and Find Full Text PDF

Background: Cancer is one of the major threats to human health and current cancer therapies have been unsuccessful in eradicating it. Ferroptosis is characterized by iron-dependence and lipid hydroperoxides accumulation, and its primary mechanism involves the suppression of system X-GSH (glutathione)-GPX4 (glutathione peroxidase 4) axis. Co-incidentally, cancer cells are also metabolically characterized by iron addiction and ROS tolerance, which makes them vulnerable to ferroptosis.

View Article and Find Full Text PDF

Objectives: We aimed to evaluate the biological effects of high static magnetic field (HiSMF, 2-12 Tesla [T]) exposure on mice in a stable and effective breeding environment in the chamber of a superconducting magnet.

Methods: C57BL/6 mice were bred in the geomagnetic field and HiSMF with different magnetic field strengths (2-4 T, 6-8 T, and 10-12 T) for 28 days. The body weight, blood indices, organ coefficients, and histomorphology of major organs were analyzed.

View Article and Find Full Text PDF

Background: Hepcidin encoded by is vital to regulating proliferation, metastasis, and migration. Hepcidin is secreted specifically by the liver. This study sought to examine the functional role of hepcidin in hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Background: Osteoblasts participating in the inflammation regulation gradually obtain concerns. However, its role in joint inflammation of rheumatoid arthritis (RA) is largely unknown. Here, we investigated the role of osteoblastic pleckstrin homology domain-containing family O member 1 (PLEKHO1), a negative regulator of osteogenic lineage activity, in regulating joint inflammation in RA.

View Article and Find Full Text PDF

Background: Type II superior labrum anterior and posterior (SLAP) lesions could induce chronic shoulder pain and impaired movement. Current management of Type II SLAP lesions consists of two well-established surgical procedures: arthroscopic biceps tenodesis and SLAP repair. However, which technique is preferred over the other is still a controversy.

View Article and Find Full Text PDF

Osteosarcoma (OS) is a highly aggressive pediatric cancer, characterized by frequent lung metastasis and pathologic bone destruction. Vascular endothelial growth factor A (VEGFA), highly expressed in OS, not only contributes to angiogenesis within the tumor microenvironment via paracrine stimulation of vascular endothelial cells, but also acts as an autocrine survival factor for tumor cell themselves, thus making it a promising therapeutic target for OS. CRISPR/Cas9 is a versatile genome editing technology and holds tremendous promise for cancer treatment.

View Article and Find Full Text PDF

Breast cancer is one of the most common causes of cancer related deaths in women. Currently, with the development of early detection, increased social awareness and kinds of treatment options, survival rate has improved in nearly every type of breast cancer patients. However, about one third patients still have increased chances of recurrence within five years and the five-year relative survival rate in patients with metastasis is less than 30%.

View Article and Find Full Text PDF

The role of osteoclastic miRNAs in regulating osteolytic bone metastasis (OBM) of breast cancer is still underexplored. Here, we examined the expression profiles of osteoclastogenic miRNAs in human bone specimens and identified that miR-214-3p was significantly upregulated in breast cancer patients with OBM. Consistently, we found increased miR-214-3p within osteoclasts, which was associated with the elevated bone resorption, during the development of OBM in human breast cancer xenografted nude mice (BCX).

View Article and Find Full Text PDF

Osteosarcoma (OS) is a bone cancer mostly occurring in pediatric population. Current treatment regime of surgery and intensive chemotherapy could cure about 60%-75% patients with primary osteosarcoma, however only 15% to 30% can be cured when pulmonary metastasis or relapse has taken place. Hence, novel precise OS-targeting therapies are being developed with the hope of addressing this issue.

View Article and Find Full Text PDF

Abnormalities in the integral components of bone, including bone matrix, bone mineral and bone cells, give rise to complex disturbances of skeletal development, growth and homeostasis. Non-specific drug delivery using high-dose systemic administration may decrease therapeutic efficacy of drugs and increase the risk of toxic effects in non-skeletal tissues, which remain clinical challenges in the treatment of skeletal disorders. Thus, targeted delivery systems are urgently needed to achieve higher drug delivery efficiency, improve therapeutic efficacy in the targeted cells/tissues, and minimize toxicities in non-targeted cells/tissues.

View Article and Find Full Text PDF

Emerging evidence indicates that osteoclasts direct osteoblastic bone formation. MicroRNAs (miRNAs) have a crucial role in regulating osteoclast and osteoblast function. However, whether miRNAs mediate osteoclast-directed osteoblastic bone formation is mostly unknown.

View Article and Find Full Text PDF

Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX), are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems.

View Article and Find Full Text PDF

Objective: To investigate the effect of supplementing qi, activating blood circulation and tonifying kidney therapy on the postoperative outcomes of patients undergoing lumber intervertebral disc herniation.

Methods: From January 2010 to May 2012, 120 patients with lumbar intervertebral disc herniation undergoing surgical treatment in Nanfang hospital were randomized into two equal groups to receive routine therapy (control group) and additional treatment with Yiqi Houxue Bushen Decoction (treatment group). The effect of the interventions was evaluated by assessing the Visual Analogue Scale(VAS), Japanese Orthopedic Association Scores (JOA), WHO Quality of Life-BREF (WHOQOL-BREF), length of hospital stay and adverse event.

View Article and Find Full Text PDF