Hybrid implants combine both Titanium (Ti) and Magnesium (Mg) are prevalent nowadays. The long-term implications of Ti and Mg implants within the human body are not yet fully understood. Many implant failure cases due to inflammation, allergic responses, and aspect loosening have been reported frequently.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
March 2020
A semi-degradable Ti + Mg composite with superior compression and cytotoxicity properties have been successfully fabricated using ink jet 3D printing followed by capillary mediated pressureless infiltration technique targeting orthopaedic implant applications. The composite exhibited low modulus (~5.2 GPa) and high ultimate compressive strength (~418 MPa) properties matching that of the human cortical bone.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
July 2020
The interplay between implant design, biomaterial characteristics, and the local microenvironment adjacent to the implant is of utmost importance for implant performance and success of the joint replacement surgery. Reactive oxygen and nitrogen species (ROS/RNS) are among the various factors affecting the host as well as the implant components. Excessive formation of ROS and RNS can lead to oxidative stress, a condition that is known to damage cells and tissues and also to affect signaling pathways.
View Article and Find Full Text PDFParkinson's disease (PD) is a disabling neurodegenerative disease that manifests with resting tremor, bradykinesia, rigidity and postural instability. Since the discovery of microRNAs (miRNAs) in 1993, miRNAs have been shown to be important biological molecules involved in diverse processes to maintain normal cellular functions. Over the past decade, many studies have reported dysregulation of miRNA expressions in PD.
View Article and Find Full Text PDFProgressive memory loss is one of the most common characteristics of Alzheimer's disease (AD), which has been shown to be caused by several factors including accumulation of amyloid β peptide (Aβ) plaques and neurofibrillary tangles. Synaptic plasticity and associative plasticity, the cellular basis of memory, are impaired in AD. Recent studies suggest a functional relevance of microRNAs (miRNAs) in regulating plasticity changes in AD, as their differential expressions were reported in many AD brain regions.
View Article and Find Full Text PDFWith the growing advent of nanotechnology in medicine (therapeutic, diagnostic and imaging applications), cosmetics, electronics, clothing and food industries, exposure to nanomaterials (NMs) is on the rise and therefore exploring their toxic biological effects have gained great significance. In vitro and in vivo studies over the last decade have revealed that NMs have the potential to cause cytotoxicity and genotoxicity although some contradictory reports exist. However, there are only few studies which have explored the epigenetic mechanisms (changes to DNA methylation, histone modification and miRNA expression) of NM-induced toxicity, and there is a scarcity of information and many questions in this area remain unexplored and unaddressed.
View Article and Find Full Text PDF