Publications by authors named "Shaik Jeelan Basha"

The discovery of effective multitarget-directed ligands (MTDLs) against multifactorial Alzheimer's disease (AD) remnants has been focused in an incessant drug discovery pursuit. In this perception, the current study explores the rational design, synthesis, and evaluation of 26 quinazolinone-hydrazine cyanoacetamide hybrids , , and as MTDLs against AD. These new compounds were synthesized in four-step processes using simple phthalimide as the starting material without any major workup procedures and were characterized by different spectroscopic techniques.

View Article and Find Full Text PDF

The entry of the SARS-CoV-2 virus into a human host cell begins with the interaction between the viral spike protein (S protein) and human angiotensin-converting enzyme 2 (hACE2). Therefore, a possible strategy for the treatment of this infection is based on inhibiting the interaction of the two abovementioned proteins. Compounds that bind to the SARS-CoV-2 S protein at the interface with the alpha-1/alpha-2 helices of ACE2 PD Subdomain I are of particular interest.

View Article and Find Full Text PDF

In view of Multi-Target Directed Ligand (MTDL) approach in treating Alzheimer's Disease (AD), a series of novel quinazolinone and vanillin cyanoacetamide based acrylamide derivatives () were designed, synthesized, and assessed for their activity against a panel of selected AD targets including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), amyloid β protein (Aβ), and also 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and neuroprotective activities. Five of the target analogs , , , and showed elevated AChE inhibitory activity with IC values of 1.058 ± 0.

View Article and Find Full Text PDF

Pleiotropic interference may be a prerequisite for the efficient limitation of the progression of multi-factorial diseases such as Alzheimer's disease (AD). Concept of designing the single chemical entity acting on two or more targets of interest has potential advantage in AD therapy. In line with this, rational design and synthesis of frame work of hybrids bearing 2,3-disubstituted quinazolinone, vanillin and α-amino phosphonate scaffolds (5a─v) were carried out.

View Article and Find Full Text PDF

Cholinesterase inhibitors and radical scavengers have been recognized as powerful symptomatic anti-Alzheimer's disease agents. Hence, the present study aimed to develop new triazineamides as potent anticholinesterase and antioxidant agents. Triazineamide () derivatives were synthesized using cyanuric chloride via nucleophilic substitution followed by condensation.

View Article and Find Full Text PDF
Article Synopsis
  • Investigating how drug binds to AChE is important for treating Alzheimer's disease, particularly by targeting β-amyloid oligomers that play a key role in the disease.
  • The study looks at multifunctional compounds (HMC) and their effects on β-amyloid aggregation using several laboratory techniques to evaluate their potential in reducing toxicity.
  • Results suggest that HMC can disrupt toxic β-amyloid structures, bind effectively to AChE, and stabilize their interaction, offering promising strategies for further research into Alzheimer's treatments.
View Article and Find Full Text PDF

Pancreatic cancer is the eleventh most common cancer type and the seventh leading cause of cancer mortality globally. Although chemotherapy is widely employed in the treatment of any cancer type, the response rate in pancreatic cancer is very low. Hence, new and effective techniques in the treatment of pancreatic cancer are needed.

View Article and Find Full Text PDF

In a search for novel multifunctional anti-Alzheimer agents, a congeneric set of seventeen flavone-8-acrylamide derivatives (8a─q) were synthesized and evaluated for their cholinesterase inhibitory, antioxidant, neuroprotective and modulation of Aβ aggregation activities. The target compounds showed effective and selective inhibitory activity against the AChE over BuChE. In addition, the target compounds also showed moderate anti-oxidant activity and strong neuroprotective capacities, and accelerated dosage-dependently the Aβ aggregation.

View Article and Find Full Text PDF

In line with the modern multi-target-directed ligand paradigm of Alzheimer's disease (AD), a series of 19 compounds composed of flavone and cyanoacetamide groups have been synthesized and evaluated as multifunctional agents against AD. Biological evaluation demonstrated that compounds 7j, 7n, 7o, 7r, and 7s exhibited excellent inhibitory potency (AChE, IC of 0.271 ± 0.

View Article and Find Full Text PDF

Background: Extensive epidemiological and clinical studies revealed that Alzheimer's Disease (AD) and Type 2 Diabetes Mellitus (T2D) are most likely to appear simultaneously in aged people as T2D is a major risk factor for AD. Therefore, development of potential multifunctional agents for dual therapy of AD and T2D has received much attention. Buchanania axillaris, Hemidesmus indicus and Rhus mysorensis have been used extensively in popular medicine.

View Article and Find Full Text PDF

Cooccurrence of Diabetes Mellitus and Alzheimer's disease in elder people prompts scientists to develop multitarget agents that combat causes and symptoms of both diseases simultaneously. In line with this modern paradigm and as a follow-up to our previous studies, the present study is designed to investigate the crude methanolic extracts and subsequent CHCl, -BuOH, and HO fractions of , and for their inhibitory activities towards specific targets involved in AD and DM, namely, acetylcholinesterase, butyrylcholinesterase, and -glucosidase (-Glc). The methanolic extract and its derived chloroform fractions exhibited remarkable inhibitory capacities with IC values being found at the g/mL level.

View Article and Find Full Text PDF

Alzheimer's disease onset and progression are associated with the dysregulation of multiple and complex physiological processes, and a successful therapeutic approach should therefore address more than one target. In line with this modern paradigm, a series of 8-imino-2-oxo-2H,8H-pyrano[2,3-f]chromene analogs (4a-q) were synthesized and evaluated for their multitarget-directed activity on acetylcholinesterase, butyrylcholinesterase (BuChE), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical, and amyloid-β peptide (Aβ) specific targets for Alzheimer's disease therapy. Most of the synthesized compounds showed remarkable acetylcholinesterase inhibitory activities in low nm concentrations and good ABTS radical scavenging activity, however, no evidence of BuChE inhibitory activity.

View Article and Find Full Text PDF

A series of fused tricyclic coumarin derivatives bearing iminopyran ring connected to various amido moieties were developed as potential multifunctional anti-Alzheimer agents for their cholinesterase inhibitory and radical scavenging activities. In vitro studies revealed that most of these compounds exhibited high inhibitory activity on acetylcholinesterase (AChE), with IC50 values ranging from 0.003 to 0.

View Article and Find Full Text PDF