BODIPYs have a well-established role in biological sciences as chemosensors and versatile biological markers due to their chemical reactivity, which allows for fine-tuning of their photophysical characteristics. In this work, we combined the unique reactivity of arylazo sulfones with the advantages of a "sunflow" reactor to develop a fast, efficient, and versatile method for the photochemical arylation of BODIPYs and other chromophores. This approach resulted in red-shifted emitting fluorophores due to extended electronic delocalization at the 3- and 5-positions of the BODIPY core.
View Article and Find Full Text PDFThis article discusses the reactivity of 6-azaindazole (1) and 2,6-naphthyridine (2), proposed to be "heteroaromatic rings of the future," which would be useful for fragment-based drug discovery (FBDD) campaigns, developing growth vectors for fragment elaboration by selectively functionalizing different positions on the rings. The pyridone oxygens and pyrazole nitrogen can be functionalized selectively. Arylation at the α-carbon of the pyridone moiety was achieved by a transition metal-free radical cross-coupling using aryl hydrazines.
View Article and Find Full Text PDFOvarian cancer is the most lethal gynecological cancer of female reproductive system. In order to improve the survival rate, some modifications on nanoparticles surfaces have been investigated to promote active targeting of drugs into tumor microenvironment. The aim of this study was the development and characterization of folate-modified (PN-PCX-FA) and unmodified PLGA nanoparticles (PN-PCX) containing paclitaxel for ovarian cancer treatment.
View Article and Find Full Text PDFIdentification of new antibiotics suitable for the treatment of tuberculosis is required. In addition to selectivity, it is necessary to find new antibiotics that are effective when the tuberculous mycobacteria are resistant to the available therapies. The furo[2,3-b]pyridine core offers potential for this application.
View Article and Find Full Text PDFA high-yielding method for the direct thiocyanation of BODIPY dyes is described. In 1,3-dimethyl BODIPYs, the thiocyanato group adds at position 2, whereas the insertion occurs at position 5 in 3-amino BODIPYs. The transformation of the thiocyanato group enables the synthesis of thioalkylated BODIPYs.
View Article and Find Full Text PDF