Publications by authors named "Shai Y"

Host defense peptides (HDPs), also named antimicrobial peptides (AMPs), are increasingly being recognized for serving multiple functions in protecting the host from infection and disease. Previous studies have shown that various HDPs can also neutralize lipopolysaccharide (LPS, endotoxin), as well as lipoteichoic acid (LTA), inducing macrophage activation. However, antimicrobial activity is usually accompanied by systemic toxicity which makes it difficult to use HDPs as antiendotoxin agents.

View Article and Find Full Text PDF

Antibiotic-resistant bacterial infections have increased the prevalence of sepsis and septic shock mortality worldwide and have become a global concern. Antimicrobial peptides (AMPs) show remarkable properties for developing new antimicrobial agents and host response modulatory therapies. A new series of AMPs derived from pexiganan (MSI-78) were synthesized.

View Article and Find Full Text PDF

The HIV envelope protein gp160 comprises two subunits, gp120 and gp41, responsible for receptor binding and membrane fusion during viral entry, respectively. In the course of the membrane fusion process, gp41 undergoes a conformational change, leading to the formation of a six-helix bundle (SHB), which ultimately drives membrane fusion. The gp41 C-terminal and N-terminal heptad repeats (CHR and NHR) interact with one another to form the SHB, and this step can be targeted by peptide inhibitors, which are used in the clinic to mitigate HIV infection.

View Article and Find Full Text PDF

Lung infection is the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and is mainly dominated by . Treatment of CF-associated lung infections is problematic because the drugs are vulnerable to multidrug-resistant pathogens, many of which are major biofilm producers like . Antimicrobial peptides (AMPs) are essential components in all life forms and exhibit antimicrobial activity.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) have the potential to treat multidrug-resistant bacterial infections. However, the clinical application of AMPs is prevented by their toxicity and poor proteolytic stability. Here, a site-specific approach is used to generate new AMPs to improve their efficacy against bacterial pathogens while reducing their toxicity.

View Article and Find Full Text PDF

The increasing number of resistant bacteria is a major threat worldwide, leading to the search for new antibiotic agents. One of the leading strategies is the use of antimicrobial peptides (AMPs), cationic and hydrophobic innate immune defense peptides. A major target of AMPs is the bacterial membrane.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs), which can be modified to kill a broad spectrum of microoganisms or a specific microorganism, are considered as promising alternatives to combat the rapidly widespread, resistant bacterial infections. However, there are still several obstacles to overcome. These include toxicity, stability, and the ability to interfere with the immune response and bacterial resistance.

View Article and Find Full Text PDF

The outcome of an antibiotic treatment on the growth capacity of bacteria is largely dependent on the initial population size (Inoculum Effect). We characterized and built a model of this effect in cultures using a large variety of antimicrobials, including conventional antibiotics, and for the first time, cationic antimicrobial peptides (CAMPs). Our results show that all classes of antimicrobial drugs induce an inoculum effect, which, as we explain, implies that the dynamic is bistable: For a range of anti-microbial densities, a very small inoculum decays whereas a larger inoculum grows, and the threshold inoculum depends on the drug concentration.

View Article and Find Full Text PDF

Bacterial resistance to antibiotics is a major concern worldwide, leading to an extensive search for alternative drugs. Promising candidates are antimicrobial peptides (AMPs), innate immunity molecules, shown to be highly efficient against multidrug resistant bacteria. Therefore, it is essential to study bacterial resistance mechanisms against them.

View Article and Find Full Text PDF

Recruited blood monocytes contribute to the establishment, perpetuation, and resolution of tissue inflammation. Specifically, in the inflamed intestine, monocyte ablation was shown to ameliorate colitis scores in preclinical animal models. However, the majority of intestinal macrophages that seed the healthy gut are also monocyte derived.

View Article and Find Full Text PDF

Hantavirus assembly and budding are governed by the surface glycoproteins Gn and Gc. In this study, we investigated the glycoproteins of Puumala, the most abundant Hantavirus species in Europe, using fluorescently labeled wild-type constructs and cytoplasmic tail (CT) mutants. We analyzed their intracellular distribution, co-localization and oligomerization, applying comprehensive live, single-cell fluorescence techniques, including confocal microscopy, imaging flow cytometry, anisotropy imaging and Number&Brightness analysis.

View Article and Find Full Text PDF

The human immunodeficiency virus enters its host cells by membrane fusion, initiated by the gp41 subunit of its envelope protein. gp41 has also been shown to bind T-cell receptor (TCR) complex components, interfering with TCR signaling leading to reduced T-cell activation. This immunoinhibitory activity is suggested to occur during the membrane fusion process and is attributed to various membranotropic regions of the gp41 ectodomain and to the transmembrane domain.

View Article and Find Full Text PDF

The ability of the Lentivirus HIV-1 to inhibit T-cell activation by its gp41 fusion protein is well documented, yet limited data exists regarding other viral fusion proteins. HIV-1 utilizes membrane binding region of gp41 to inhibit T-cell receptor (TCR) complex activation. Here we examined whether this T-cell suppression strategy is unique to the HIV-1 gp41.

View Article and Find Full Text PDF

Multidrug resistant bacteria possess various mechanisms that can sense environmental stresses such as antibiotics and antimicrobial peptides and rapidly respond to defend themselves. Two known defense strategies are biofilm formation and lipopolysaccharide (LPS) modification. Though LPS modifications are observed in biofilm-embedded bacteria, their effect on biofilm formation is unknown.

View Article and Find Full Text PDF

Cell surfaces are densely populated with various proteins. Aggregation of these proteins to nanoscale clusters can be critical for various cellular functions such as signaling, motility and division. Quantitative characterization of corresponding structures and their changes might be useful to understand these basic cell processes and serve as an early marker of cellular stress or diseases.

View Article and Find Full Text PDF

Recently, a single study revealed a new complex composed of Toll-like receptor 4 (TLR4), TLR6, and CD36 induced by fibrillary Aβ peptides, the hallmark of Alzheimer's disease. Unlike TLRs located on the plasma membrane that dimerize on the membrane after ligand binding to their extracellular domain, the TLR4-TLR6-CD36 complex assembly has been suggested to be induced by intracellular signals from CD36, similar to integrin inside-out signaling. However, the assembly site of TLR4-TLR6-CD36 and the domains participating in Aβ-induced signaling is still unknown.

View Article and Find Full Text PDF

Multidrug-resistant bacteria are a growing problem worldwide. One extensively studied resistance mechanism is biofilm colonization-microbial colonies formed by many Gram-positive and Gram-negative bacteria species. Cationic antimicrobial peptides (AMPs) are innate immune system molecules serving as a first line of defense in fighting invading pathogens.

View Article and Find Full Text PDF

The persistence of HIV in resting memory CD4 T cells at a latent state is considered as the major barrier on the path to achieve a cure for HIV. Proteasome inhibitors (PIs) were previously reported as latency reversing agents (LRAs) but the mechanism underlying this function is yet unclear. Here we demonstrate that PIs reactivate latent HIV ex vivo without global T cell activation, and may facilitate host innate immune responses.

View Article and Find Full Text PDF

The HIV gp160 envelope fusion protein is situated in the viral membrane and mediates virus entry into its host cell. Increasing evidence suggests that virtually all parts of the HIV envelope are structurally and functionally dependent on membranes. Protein-lipid interactions and membrane properties influence the dynamics of a manifold of gp160 biological activities such as membrane fusion, immune suppression and gp160 incorporation into virions during HIV budding and assembly.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is the major microorganism colonizing the respiratory epithelium in cystic fibrosis (CF) sufferers. The widespread use of available antibiotics has drastically reduced their efficacy, and antimicrobial peptides (AMPs) are a promising alternative. Among them, the frog skin-derived AMPs, i.

View Article and Find Full Text PDF

The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics.

View Article and Find Full Text PDF

The ErbB family of tyrosine kinase receptors is a key element in preserving cell growth homeostasis. This family is comprised of four single-transmembrane domain proteins designated ErbB-1-4. Ligand binding initiates dimerization followed by tyrosine phosphorylation and signaling, which when uncontrolled lead to cancer.

View Article and Find Full Text PDF

Monocytes have emerged as critical driving force of acute inflammation. Here, we show that inhibition of Toll-like receptor 2(TLR2) dimerization by a TLR2 transmembrane peptide (TLR2-p) ameliorated DSS-induced colitis by interfering specifically with the activation of Ly6C(+) monocytes without affecting their recruitment to the colon. We report that TLR2-p directly interacts with TLR2 within the membrane, leading to inhibition of TLR2-TLR6/1 assembly induced by natural ligands.

View Article and Find Full Text PDF

To successfully infect and persist within its host, HIV-1 utilizes several immunosuppressive motifs within its gp41 envelope glycoprotein to manipulate and evade the immune system. The transmembrane domain (TMD) of gp41 downregulates T-cell receptor (TCR) signaling through a hitherto unknown mechanism. Interactions between TMDs within the membrane milieu have been shown to be typically mediated by particular amino acids, such as interactions between basic and acidic residues and dimerization motifs as GxxxG.

View Article and Find Full Text PDF

For successful infection and propagation viruses must overcome many obstacles such as the immune system and entry into their host cells. HIV utilizes its trimeric envelope protein gp160, specifically the gp41 subunit, to enter its host cell. During this process, a gp41-central coiled coil is formed from three N- and three C-terminal heptad repeats, termed the six-helix bundle (SHB), which drives membrane fusion.

View Article and Find Full Text PDF