Publications by authors named "Shai J Lawit"

Recent breeding efforts in have focused on the development of new oilseed feedstock crop for biofuels (e.g., ethanol, biodiesel, bio-jet fuel), bio-industrial uses (e.

View Article and Find Full Text PDF

Increasing maize grain yield has been a major focus of both plant breeding and genetic engineering to meet the global demand for food, feed, and industrial uses. We report that increasing and extending expression of a maize MADS-box transcription factor gene, , under the control of a moderate-constitutive maize promoter, results in maize plants with increased plant growth, photosynthesis capacity, and nitrogen utilization. Molecular and biochemical characterization of transgenic plants demonstrated that their enhanced agronomic traits are associated with elevated plant carbon assimilation, nitrogen utilization, and plant growth.

View Article and Find Full Text PDF

Sorghum is the fifth most widely planted cereal crop in the world and is commonly cultivated in arid and semi-arid regions such as Africa. Despite its importance as a food source, sorghum genetic improvement through transgenic approaches has been limited because of an inefficient transformation system. Here, we report a ternary vector (also known as cohabitating vector) system using a recently described pVIR accessory plasmid that facilitates efficient Agrobacterium-mediated transformation of sorghum.

View Article and Find Full Text PDF

Numerous cell ablation technologies are available and have been used in reproductive tissues, particularly for male tissues and cells. The importance of ablation of reproductive tissues is toward a fundamental understanding reproductive tissue development and fertilization, as well as, in developing sterility lines important to breeding strategies. Here, we describe techniques for developing ablation lines for both male and female reproductive cells.

View Article and Find Full Text PDF

Visualization of the intact embryo sac within the ovular/gynoecial tissues and clear identification of cell types can be logistically difficult and subject to interpretation. Cellular marker technologies have been available for the embryo sac, but have typically labeled only one cell type in a particular line. Here, we describe techniques for simultaneous labeling each cell type in the embryo sac and visualization methods for such in Arabidopsis, soybean, maize, and sorghum.

View Article and Find Full Text PDF

Expression datasets relating to the Arabidopsis female gametophyte have enabled the creation of a tool set which allows simultaneous visual tracking of each specific cell type (egg, synergids, central cell, and antipodals). This cell-specific, fluorescent labeling tool-set functions from gametophyte cellularization through fertilization and early embryo development. Using this system, cell fates were tracked within Arabidopsis ovules following molecular manipulations, such as the ablation of the egg and/or synergids.

View Article and Find Full Text PDF

DELLA proteins are nuclear-localized negative regulators of gibberellin signaling found ubiquitously throughout higher plants. Dominant dwarfing mutations of DELLA proteins have been primarily responsible for the dramatic increases in harvest index of the 'green revolution'. Maize contains two genetic loci encoding DELLA proteins, dwarf plant8 (d8) and dwarf plant 9 (d9).

View Article and Find Full Text PDF

Motivation: Measurements of gene expression over time enable the reconstruction of transcriptional networks. However, Bayesian networks and many other current reconstruction methods rely on assumptions that conflict with the differential equations that describe transcriptional kinetics. Practical approximations of kinetic models would enable inferring causal relationships between genes from expression data of microarray, tag-based and conventional platforms, but conclusions are sensitive to the assumptions made.

View Article and Find Full Text PDF

General transcription factor IID (TFIID) is a multisubunit protein complex involved in promoter recognition and is fundamental to the nucleation of the RNA polymerase II transcriptional preinitiation complex. TFIID is comprised of the TATA binding protein (TBP) and 12-15 TBP-associated factors (TAFs). While general transcription factors have been extensively studied in metazoans and yeast, little is known about the details of their structure and function in the plant kingdom.

View Article and Find Full Text PDF

Full-length cDNAs encoding the alpha- and beta-subunits and a truncated mutant subunit of the Chlorella sorokiniana NADP-GDH isozymes were constructed and expressed in Escherichia coli cells. The kinetic and thermal stability properties of the resultant homohexamers were examined. The electrophoretic mobility of the recombinant alpha- and beta-subunits was identical to that of the native subunits as determined by immunoblotting.

View Article and Find Full Text PDF