Publications by authors named "Shai Berman"

The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures.

View Article and Find Full Text PDF

Mapping structural spatial change (i.e., gradients) in the striatum is essential for understanding the function of the basal ganglia in both health and disease.

View Article and Find Full Text PDF

Many diffusion magnetic resonance imaging (dMRI) studies document associations between reading skills and fractional anisotropy (FA) within brain white matter, suggesting that efficient transfer of information across the brain contributes to individual differences in reading. Use of complementary imaging methods can determine if these associations relate to myelin content of white matter tracts. Compared to children born at term (FT), children born preterm (PT) are at risk for reading deficits.

View Article and Find Full Text PDF

Development of cortical tissue during infancy is critical for the emergence of typical brain functions in cortex. However, how cortical microstructure develops during infancy remains unknown. We measured the longitudinal development of cortex from birth  to six months of age  using multimodal quantitative imaging of cortical microstructure.

View Article and Find Full Text PDF

The claustrum is a thin sheet of neurons enclosed by white matter and situated between the insula and the putamen. It is highly interconnected with sensory, frontal, and subcortical regions. The deep location of the claustrum, with its fine structure, has limited the degree to which it could be studied in vivo.

View Article and Find Full Text PDF

In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity.

View Article and Find Full Text PDF

Objective: We combined diffusion MRI (dMRI) with quantitative T1 (qT1) relaxometry in a sample of school-aged children born preterm and full term to determine whether reduced fractional anisotropy (FA) within the corpus callosum of the preterm group could be explained by a reduction in myelin content, as indexed by R1 (1/T1) from qT1 scans.

Methods: 8-year-old children born preterm (n = 29; GA 22-32 weeks) and full term (n = 24) underwent dMRI and qT1 scans. Four subdivisions of the corpus callosum were segmented in individual native space according to cortical projection zones (occipital, temporal, motor and anterior-frontal).

View Article and Find Full Text PDF

Recent years have seen a growing interest in relating MRI measurements to the structural-biophysical properties of white matter fibers. The fiber g-ratio, defined as the ratio between the inner and outer radii of the axon myelin sheath, is an important structural property of white matter, affecting signal conduction. Recently proposed modeling methods that use a combination of quantitative-MRI signals, enable a measurement of the fiber g-ratio in vivo.

View Article and Find Full Text PDF

Quantitative magnetic resonance imaging (qMRI) aims to quantify tissue parameters by eliminating instrumental bias. We describe qMRI theory, simulations, and software designed to estimate proton density (PD), the apparent local concentration of water protons in the living human brain. First, we show that, in the absence of noise, multichannel coil data contain enough information to separate PD and coil sensitivity, a limiting instrumental bias.

View Article and Find Full Text PDF