Novel technologies are constantly under development for vision restoration in blind patients. Many of these emerging technologies are based on the projection of high intensity light patterns at specific wavelengths, raising the need for the development of specialized projection systems. Here we present and characterize a novel projection system that meets the requirements for artificial retinal stimulation in rats and enables the recording of cortical responses.
View Article and Find Full Text PDFPassive ophthalmic optic devices correct refractive defects of the eye but are not designed to employ neural adaptation processes. An extended depth of focus technology is implemented on conventional refractive devices, such as spectacles and contact lenses, and its testing is described. This technology is capable of simultaneously correcting all refractive errors, such as myopia, hyperopia, presbyopia, regular/irregular astigmatism, as well as their combinations.
View Article and Find Full Text PDFPurpose: To measure the optical performance of an extended depth of focus (EDOF) intraocular lens (IOL), which provides an imaging solution for near, intermediate, and distance ranges, and to compare its optical performance to available bifocal IOLs with various extents of decentration and astigmatism aberrations.
Methods: A special profile that performs interference principle-based focal extension is engraved on the top of a monofocal rigid IOL. An optical bench based on the L&B eye model was used to test the performance in comparison with the bifocal AcrySof ReSTOR SA60D3 lens (Alcon Laboratories Inc).
We overview the benefits that extended depth of focus technology may provide for three-dimensional imaging and profilometry. The approaches for which the extended depth of focus benefits are being examined include stereoscopy, light coherence, pattern projection, scanning line, speckles projection, and projection of axially varied shapes.
View Article and Find Full Text PDFThe purpose of this Letter is to design, develop, fabricate, and test in clinical trials a new (to our knowledge) type of contact lenses that provides simultaneous near and distance focused vision for presbyopic subjects, including those with up to 2.00 diopters (D) of regular/irregular astigmatism, as an alternative to multifocal contact lenses. The purpose is obtained by generating an optical pattern on the front surface of contact lenses, capable of extending the depth of focus of lenses by 3.
View Article and Find Full Text PDFThe aim of the presented research was to develop special spectacles capable of solving common ophthalmic problems as myopia, presbyopia and regular/irregular astigmatism. The method included adapting special all-optical extended depth of focus concept, taken from the field of digital imaging, to ophthalmology, and by that providing the required vision solutions. Special thin mask containing annular like replicated structure (thickness of the structure is less than one micron) was designed and proven to provide extended depth of focus.
View Article and Find Full Text PDFIn this paper we present a simple approach to obtain extended depth of field for any optical imaging system just by adding a birefringent plate between the lens and the detector. The width of the plate is properly designed such that one polarization state contains in-focus near field information while the other polarization state contains in-focus far field details. Both images are superimposed one on top of the other and thus an all-optical spatially sharp imaging is obtained containing both fields.
View Article and Find Full Text PDFThe advantages of optics that include processing speed and information throughput, modularity and versatility could be incorporated into one of the most interesting and applicable topics of digital communication related to Viterbi decoders. We aim to accelerate the processing rate and capabilities of Viterbi decoders applied for convolution codes, speech recognition, inter symbol interference (ISI) mitigation problems. The suggested configuration for realizing the decoder is based upon fast optical switches.
View Article and Find Full Text PDF