Accurate segmentation of skin lesions within dermoscopic images plays a crucial role in the timely identification of skin cancer for computer-aided diagnosis on mobile platforms. However, varying shapes of the lesions, lack of defined edges, and the presence of obstructions such as hair strands and marker colours make this challenge more complex. Additionally, skin lesions often exhibit subtle variations in texture and colour that are difficult to differentiate from surrounding healthy skin, necessitating models that can capture both fine-grained details and broader contextual information.
View Article and Find Full Text PDFBlinding eye diseases are often related to changes in retinal structure, which can be detected by analysing retinal blood vessels in fundus images. However, existing techniques struggle to accurately segment these delicate vessels. Although deep learning has shown promise in medical image segmentation, its reliance on specific operations can limit its ability to capture crucial details such as the edges of the vessel.
View Article and Find Full Text PDFIn this study, we propose LDMRes-Net, a lightweight dual-multiscale residual block-based convolutional neural network tailored for medical image segmentation on IoT and edge platforms. Conventional U-Net-based models face challenges in meeting the speed and efficiency demands of real-time clinical applications, such as disease monitoring, radiation therapy, and image-guided surgery. In this study, we present the Lightweight Dual Multiscale Residual Block-based Convolutional Neural Network (LDMRes-Net), which is specifically designed to overcome these difficulties.
View Article and Find Full Text PDFAutomated retinal image analysis holds prime significance in the accurate diagnosis of various critical eye diseases that include diabetic retinopathy (DR), age-related macular degeneration (AMD), atherosclerosis, and glaucoma. Manual diagnosis of retinal diseases by ophthalmologists takes time, effort, and financial resources, and is prone to error, in comparison to computer-aided diagnosis systems. In this context, robust classification and segmentation of retinal images are primary operations that aid clinicians in the early screening of patients to ensure the prevention and/or treatment of these diseases.
View Article and Find Full Text PDF