Purpose: Human pluripotency gene networks (PGNs), controlled in part by Oct4, are central to understanding pluripotent stem cells, but current fluorescent reporter genes (RGs) preclude noninvasive assessment of Oct4 dynamics in living subjects.
Procedures: To assess Oc4 activity noninvasively, we engineered a mouse embryonic stem cell line which encoded both a pOct4-hrluc (humanized renilla luciferase) reporter and a pUbi-hfluc2-gfp (humanized firefly luciferase 2 fused to green fluorescent protein) reporter.
Results: In cell culture, pOct4-hRLUC activity demonstrated a peak at 48 h (day 2) and significant downregulation by 72 h (day 3) (p=0.
Noninvasive imaging of molecular-genetic and cellular processes is an effective way to determine the location(s), magnitude, and time variation of action of gene products used for many therapeutic strategies. Lentiviral vectors provide effective means for the delivery, integration, and expression of transgenes in cultured mammalian cells as well as in vivo. Therefore, the combination of lentiviral vector-mediated therapeutic and imaging-targeted reporter gene delivery to various target organs holds promise for the future treatment of diseases.
View Article and Find Full Text PDF