Publications by authors named "Shahriar Jahanbani"

This study aims at the functionalization of magnetic graphene oxide nanosheets and the binding of humic acid as a lead complex ligand. Graphene oxide nanosheets possess a large surface area and various carboxylic acid groups which can be activated easily by activating agents. Therefore, they are suitable to be used for the extraction of heavy metals.

View Article and Find Full Text PDF

The main aim of the present study was the measurement of nickel metal ion in the real samples of crab, oyster and rice by the designed magnetic nano adsorbent silk fibroin-EDTA ligand (SF-FeO-EDTA). Due to the structure of silk fibroin (possessing lots of functional groups which are suitable for attachment of ligands and high surface area), it was used in the structure of fabricated nano-adsorbent. To follow the fabrication processes of the magnetic nano-adsorbent, different techniques of fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Visible), vibrating sample magnetometer (VSM), and field emission scanning electron microscopy (FE-SEM) were used.

View Article and Find Full Text PDF

In this study, a simple and novel electrochemical biosensor based on a glassy carbon electrode (GCE) modified with a composite of graphene oxide (GO) - silk fibroin nanofibers (SF) and gold nanoparticles (MCH/ssDNA/AuNPs/SF/GO/GCE) was developed for detection of DNA sequences. The fabrication processes of electrochemical biosensor were characterized by scanning electron microscopy (SEM), FT-IR and electrochemical methods. Some experimental conditions such as immobilization time of probe DNA and MCH incubation time, time and temperature of hybridization were optimized.

View Article and Find Full Text PDF

This article describes an impedimetric aptasensor for the prostate specific antigen (PSA), a widely accepted prostate cancer biomarker. A glassy carbon electrode (GCE) was modified with titanium oxide nanoparticles (TiO) and silk fibroin nanofiber (SF) composite. The aptasensor was obtained by immobilizing a PSA-binding aptamer on the AuNP-modified with 6-mercapto-1-hexanol.

View Article and Find Full Text PDF

In this paper, a highly sensitive voltammetric sensor based on a carbon paste electrode with CuFeO nanoparticle (RGO/CuFeO/CPE) was designed for determination of hydrogen peroxide (HO). The electrocatalytic reduction of HO was examined using various techniques such as cyclic voltammetry (CV), chronoamperometry, amperometry and differential pulse voltammetry (DPV). CuFeO nanoparticles were synthesized by co-precipitation method and characterized with scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques.

View Article and Find Full Text PDF

In this study, we have designed a label free DNA biosensor based on a magnetic bar carbon paste electrode (MBCPE) modified with nanomaterial of Fe3O4/reduced graphene oxide (Fe3O4NP-RGO) as a composite and 1- pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS) as a linker for detection of DNA sequences. Probe (BRCA1 5382 insC mutation detection) strands were immobilized on the MBCPE/Fe3O4-RGO/PANHS electrode for the exact incubation time. The characterization of the modified electrode was studied using different techniques such as scanning electron microscopy (SEM), infrared spectroscopy (IR), vibrating sample magnetometer (VSM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry methods.

View Article and Find Full Text PDF

In this research, we have improved two aptasensors based on a modified carbon paste electrode (CPE) with oleic acid (OA), and a magnetic bar carbon paste electrode (MBCPE) with Fe3O4 magnetic nanoparticles and oleic acid (OA). After the immobilization process of anti-TET at the electrode surfaces, the aptasensors were named CPE/OA/anti-TET and MBCPE/Fe3O4NPs/OA/anti-TET respectively. In this paper, the detection of tetracycline is compared using CPE/OA/anti-TET and MBCPE/Fe3O4NPs/OA/anti-TET aptasensors.

View Article and Find Full Text PDF

In this research, we have developed lable free DNA biosensors based on modified glassy carbon electrodes (GCE) with reduced graphene oxide (RGO) and carbon nanotubes (MWCNTs) for detection of DNA sequences. This paper compares the detection of BRCA1 5382insC mutation using independent glassy carbon electrodes (GCE) modified with RGO and MWCNTs. A probe (BRCA1 5382insC mutation detection (ssDNA)) was then immobilized on the modified electrodes for a specific time.

View Article and Find Full Text PDF