Half-metallic ferromagnetic materials have attracted a lot of attention due to their probable technological applications in spintronics. In this respect, doping plays a crucial role in tailoring or controlling the physical properties of the system. Herein, the impact of both hole and electron doping on the structural, electronic and magnetic properties of the recent high pressure synthesized non-magnetic insulator BaCaMoO double perovskite oxide are investigated by replacing one of the Mo ions with Nb and Tc.
View Article and Find Full Text PDFUsing ab-initio calculations, the electronic and magnetic properties of double perovskite oxide [Formula: see text] with two type of strains: biaxial (along the [110]-direction) and hydrostatic (along [111]-direction) are investigated. The ground state of the unstrained system is half-metallic ferrimagnetic, due to a strong antiferromagnetic (AFM) coupling between Cr and Re atoms within both (GGA and GGA+U) exchange-correlation potentials. It is demonstrated that the robustness of half-metallicity can be preserved under the influence of both biaxial and hydrostatic strains.
View Article and Find Full Text PDF