Determining the role and necessity of specific neurons in a network calls for precisely timed, reversible removal of these neurons from the circuit via remotely triggered transient silencing. Previously, we have shown that alternating magnetic field mediated heating of magnetic nanoparticles, bound to neurons, expressing temperature-sensitive cation channels TRPV1 remotely activates these neurons, evoking behavioral responses in mice. Here, we demonstrate how to apply magnetic nanoparticle heating to silence target neurons.
View Article and Find Full Text PDFEstablishing how neurocircuit activation causes particular behaviors requires modulating the activity of specific neurons. Here, we demonstrate that magnetothermal genetic stimulation provides tetherless deep brain activation sufficient to evoke motor behavior in awake mice. The approach uses alternating magnetic fields to heat superparamagnetic nanoparticles on the neuronal membrane.
View Article and Find Full Text PDFSmall amounts of highly reactive oxygen species (oxyradicals) are normal by-products of cellular metabolism. However, under certain conditions large amounts of oxyradicals are generated inside cells which may cause extensive cellular damage. Not surprisingly, a large number of disease states have been linked to oxidative stress, including cancer, diabetes, Parkinson's disease, Alzheimer's disease, and heart disease.
View Article and Find Full Text PDF