The auto-combustion method synthesized CuO NPs and Ag/CuO NPs. The Ag/CuO NPs were analyzed using Fourier-transform infrared, X-ray diffraction, scanning electron microscope, and Energy-dispersive X-ray spectroscopy instrumental analyses. The energy band gap, as determined by DRS properties, decreases from 3.
View Article and Find Full Text PDFAntibiotic resistance is currently becoming a more serious threat to global health, especially in severe nosocomial infections treatment by multidrug-resistant bacteria. This research provides a new way of synergizing green-synthesis for zinc oxide quantum dots (ZnO-QDs with hexagonal crystals) that are 7 nm in diameter and zero-valent Ag cubic crystals that are 67 nm in size embedded with nitazoxanide substrate (NAZ). Instrumental characterization like SEM, TEM, EDAX, and FT-IR and comprehensive antimicrobial studies were conducted to study the incorporation behavior of composites based on Ag NPs/ZnO QDs/NAZ.
View Article and Find Full Text PDFThe self-gelation utilizes natural vanillin as a primary component of vanilla bean extract, and as a crosslinking agent for entangling chitosan-PVA hydrogels. This involves a Schiff-base reaction, where amino group of chitosan (CH) interacts with aldehyde group of vanillin (Van). The optimized formula of formed hydrogels is chosen based on achieving a well-balanced combination of self-healing capability, mechanical strength, sustained release profile, and hydrophilic tendency.
View Article and Find Full Text PDFIn this study, Ziziphus spina christi leaves was used to synthesize a trimetallic CuO/Ag/ZnO nanocomposite by a simple and green method. Many characterizations e.g.
View Article and Find Full Text PDFDue to their high specific surface area and its characteristic's functionalized nanomaterials have great potential in medical applications specialty, as an anticancer. Herein, functional nanoparticles (NPs) based on iron oxide FeO, iron oxide modified with copper oxide FeO@CuO, and tungsten oxide WO were facile synthesized for biomedical applications. The obtained nanomaterials have nanocrystal sizes of 35.
View Article and Find Full Text PDFIn this study, a ZnO/MnO nanocomposite was myco-fabricated using the isolated endophytic Clonostachys rosea strain EG99 as the nano-factory. The extract of strain EG99, a reducing/capping agent, was successfully titrated with equal quantities of Zn(NO)·6HO and Mn(NO)·6HO (precursors) in a single step to fabricate the rod-shaped ZnO/MnO nanocomposite of size 6.22 nm.
View Article and Find Full Text PDFThis work aims to develop plant extract-loaded electrospun nanofiber as an effective wound dressing scaffolds for topical wound healing. Electrospun nanofibers were fabricated from leaf extract (SCLE), poly(lactic--glycolic acid) (PLGA), poly(methyl methacrylate) (PMMA), collagen and glycine. Electrospinning conditions were optimized to allow the formation of nanosized and uniform fibers that display smooth surface.
View Article and Find Full Text PDFIn this work, Tamarindus indica (T. indica)-loaded crosslinked poly(methyl methacrylate) (PMMA)/cellulose acetate (CA)/poly(ethylene oxide) (PEO) electrospun nanofibers were designed and fabricated for wound healing applications. T.
View Article and Find Full Text PDFThe global state of antibiotic resistance highlights the necessity for new drugs that can treat a wide range of microbial infections. Drug repurposing has several advantages, including lower costs and improved safety compared to developing a new compound. The aim of the current study is to evaluate the repurposed antimicrobial activity of Brimonidine tartrate (BT), a well-known antiglaucoma drug, and to potentiate its antimicrobial effect by using electrospun nanofibrous scaffolds.
View Article and Find Full Text PDFPurpose: Diabetes mellitus is among the disrupting factors of orchestrated events in wound healing. This necessitates the urge for tailored medications, which are continually offered by nano-sized materials. Herein, we present greenly synthesized copper oxide nanoparticles (CuO NPs), obtained from either .
View Article and Find Full Text PDFIn this study, we identified a suitable precursor and good cellular compartmentalization for enhancing bioactive metabolites to produce biosynthetic zinc oxide nanoparticles (ZnO NPs). An effective medium for cultivating endophytic Streptomyces albus strain E56 was selected using several optimized approaches in order to maximize the yield of biosynthetic ZnO NPs. The highest biosynthetic ZnO NPs yield (4.
View Article and Find Full Text PDFThis report provides the first description of the myco-synthesis of rod-shaped MnO NPs with an average crystallite size of ~ 35 nm, employing extracellular bioactive metabolites of endophytic Trichoderma virens strain EG92 as capping/reducing agents and MnCl·4HO as a parent component. The wheat bran medium was chosen to grow endophytic strain EG92, which produced a variety of bioactive metabolites in extracellular fraction, which increases the yield of MnO NPs to 9.53 g/l.
View Article and Find Full Text PDFA series of carboxymethylcellulose (CMC) functionalized with glycidyl methacrylate (GMA) was successfully synthesized for producing of CMC-g-GMA copolymer. Water-soluble CMC-g-GMA copolymer was photo-crosslinked while Irgacure-2959 was used as a UV-photo-initiator at 365 nm. On the other hand, cellulose nanocrystals (CNCs) from sugarcane were graft-copolymerized in an aqueous solution utilizing cerium ammonium nitrate (CAN) as an initiator in a redox-initiated free-radical approach.
View Article and Find Full Text PDFInt J Nanomedicine
November 2021
Background: 6-Mercaptopurine (6-MP) is a potential anti-cancer agent which its therapeutic and limitation applicability due to its high toxicity.
Objective: Herein, 6-MP was loaded into tri-layered sandwich nanofibrous scaffold (the top layer composed of poly methyl methacrylate/polycaprolactone (PMMA/PCL), the middle layer was PCL/PMMA/6-MP, and the bottom layer was PCL/PMMA to improve its bioactivity, adjusting the release-sustainability and reduce its toxicity.
Methods: Electrospun tri-layered nanofibers composed of PCL/PMMA were utilized as nano-mats for controlling sustained drug release.
Background: Plant-associated microbes (endophytes) have a significant relationship to enhance plant growth and crop productivity by producing proficient bioactive metabolites. Since endophytes promoted plant growth either directly by releasing active metabolites such as phytohormones or indirectly by suppressing the growth of phytopathogens, so, in this work, biomass yield of local endophytic Trichoderma harzianum was maximized at shake-flask scale and scaled up via 7-L Bioflo310 fermenter using continuous exponential fed-batch fermentation mode. Subsequently, the effect of these cells as bio-fertilizer was assessed using two-barley grain genotypes (Russian and Egyptian seeds) via an intelligent hydroponic system based on Internet of Things (IoT).
View Article and Find Full Text PDFThis study targets to develop curcumin-loaded polyvinyl alcohol/cellulose nanocrystals (PVA/CNCs) membrane as localized delivery system for breast/liver cancer. A novel strategy was developed for enhancing encapsulation capacity and maximizing therapeutic efficiency of curcumin-loaded PVA/CNCs membranes. Membranes were prepared by solution-casting method using citric acid as crosslinker.
View Article and Find Full Text PDFIn this report, the local nano-MgO synthesizer strain has been isolated from Ocimum sanctum plant and deposited in GenBank as endophytic Streptomyces coelicolor strain E72. Its intracellular metabolic fraction that contains 7.2 μg/μl of carbohydrate, 6.
View Article and Find Full Text PDFDevelopment of reliable and low-cost requirement for large-scale eco-friendly biogenic synthesis of metallic nanoparticles is an important step for industrial applications of bionanotechnology. In the present study, the mycosynthesis of spherical nano-Ag (12.7 ± 0.
View Article and Find Full Text PDF