Protein aggregation is the underlying cause of many diseases, and also limits the usefulness of many natural and engineered proteins in biotechnology. Better mechanistic understanding and characterization of aggregation-prone states is needed to guide protein engineering, formulation, and drug-targeting strategies that prevent aggregation. While several final aggregated states-notably amyloids-have been characterized structurally, very little is known about the native structural conformers that initiate aggregation.
View Article and Find Full Text PDFThe analytical characterization of biopharmaceuticals is a fundamental step in the early stages of development and prediction of their behavior in bioprocesses. Protein aggregation in particular is a common issue as it affects all stages of product development. In the present work, we investigate the stability and the aggregation kinetics of A33Fab, a therapeutically relevant humanized antibody fragment at a wide range of pH, ionic strength, and temperature.
View Article and Find Full Text PDFDuring the manufacture of biopharmaceutical products, the final product must lie within strict pre-set specifications, for example the host cell protein (HCP) content. A number of specific HCPs have been identified in particular products and the interactions between product/HCPs have also been recently investigated; however, a comparison of the HCP dynamics between related cell lines and their response to early downstream processing to aid process development and cell line selection has not been published. We have utilised a proteomic approach coupled with an ultra scale-down study to determine the HCP profile dynamics, at harvest and during early downstream processing, across a panel of recombinant GS-CHOK1SV antibody producing cell lines.
View Article and Find Full Text PDFReversible precipitation can be used as an efficient purification tool for proteins. In addition, identifying conditions under which precipitation or aggregation occurs is of key importance in the bioprocessing and pharmaceutical industry, as this can aid in better formulations and hinder aggregation in chromatography. We have evaluated the precipitation of proteins as determined by light scattering in microplates as a tool for the high-throughput determination of thermodynamic parameters for protein precipitation, with the potential for screening of formulation additives and relevant bioprocess conditions such as pH.
View Article and Find Full Text PDF