Publications by authors named "Shahin Zangenehpour"

Children with fetal alcohol spectrum disorders display behavioural and intellectual impairments that strongly implicate dysfunction within the frontal cortex. Deficits in social behaviour and cognition are amongst the most pervasive outcomes of prenatal ethanol exposure. Our naturalistic vervet monkey model of fetal alcohol exposure (FAE) provides an unparalleled opportunity to study the neurobehavioral outcomes of prenatal ethanol exposure in a controlled experimental setting.

View Article and Find Full Text PDF

Recent studies suggest that exposure to only one component of audiovisual events can lead to cross-modal cortical activation. However, it is not certain whether such crossmodal recruitment can occur in the absence of explicit conditioning, semantic factors, or long-term associations. A recent study demonstrated that crossmodal cortical recruitment can occur even after a brief exposure to bimodal stimuli without semantic association.

View Article and Find Full Text PDF

Hemiparesis, unilateral weakness or partial paralysis, is a common outcome following hemispherectomy in humans. We use the non-human primate as an invaluable translational model for our understanding of developmental plasticity in response to hemispherectomy. Three infant vervet monkeys (Chlorocebus sabeus) underwent hemispherectomy at a median age of 9 weeks and two additional monkeys at 48 months.

View Article and Find Full Text PDF

Several lines of evidence suggest that exposure to only one component of typically audiovisual events can lead to crossmodal cortical activation. These effects are likely explained by long-term associations formed between the auditory and visual components of such events. It is not certain whether such crossmodal recruitment can occur in the absence of explicit conditioning, semantic factors, or long-term association; nor is it clear whether primary sensory cortices can be recruited in such paradigms.

View Article and Find Full Text PDF

Immunohistochemistry (IHC) is one of the most widely used laboratory techniques for the detection of target proteins in situ. Questions concerning the expression pattern of a target protein across the entire brain are relatively easy to answer when using IHC in small brains, such as those of rodents. However, answering the same questions in large and convoluted brains, such as those of primates presents a number of challenges.

View Article and Find Full Text PDF

Unbiased stereology is a method for accurately and efficiently estimating the total neuron number (or other cell type) in a given area of interest(1). To achieve this goal 6-10 systematic sections should be probed covering the entire structure. Typically this involves processing 1/5 sections which leaves a significant amount of material unprocessed.

View Article and Find Full Text PDF

The use of non-human primates provides an excellent translational model for our understanding of developmental and aging processes in humans(1-6). In addition, the use of non-human primates has recently afforded the opportunity to naturally model complex psychiatric disorders such as alcohol abuse(7). Here we describe a technique for blocking the brain in the coronal plane of the vervet monkey (Chlorocebus aethiops sabeus) in the intact skull in stereotaxic space.

View Article and Find Full Text PDF

The visual system in humans is considered the gateway to the world and plays a principal role in the plethora of sensory, perceptual and cognitive processes. It is therefore not surprising that quality of vision is tied to quality of life . Despite widespread clinical and basic research surrounding the causes of visual disorders, many forms of visual impairments, such as retinitis pigmentosa and macular degeneration, lack effective treatments.

View Article and Find Full Text PDF

The non-human primate is an important translational species for understanding the normal function and disease processes of the human brain. Unbiased stereology, the method accepted as state-of-the-art for quantification of biological objects in tissue sections, generates reliable structural data for biological features in the mammalian brain. The key components of the approach are unbiased (systematic-random) sampling of anatomically defined structures (reference spaces), combined with quantification of cell numbers and size, fiber and capillary lengths, surface areas, regional volumes and spatial distributions of biological objects within the reference space.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is one of the most prevalent forms of heritable mental retardation and developmental delay in males. The syndrome is caused by the silencing of a single gene (fragile X mental retardation-1; FMR1) and the lack of expression of its protein product (fragile X mental retardation-1 protein; FMRP). Recent work has linked the high expression levels of FMRP in the magnocellular layers of lateral geniculate nucleus (M-LGN) of the visual system to a specific reduction of perceptual function known to be mediated by that neural structure.

View Article and Find Full Text PDF

Background: Understanding the evolutionary origins of a phenotype requires understanding the relationship between ontogenetic and phylogenetic processes. Human infants have been shown to undergo a process of perceptual narrowing during their first year of life, whereby their intersensory ability to match the faces and voices of another species declines as they get older. We investigated the evolutionary origins of this behavioral phenotype by examining whether or not this developmental process occurs in non-human primates as well.

View Article and Find Full Text PDF

Background: It is believed that a face-specific system exists within the primate ventral visual pathway that is separate from a domain-general nonface object coding system. In addition, it is believed that hemispheric asymmetry, which was long held to be a distinct feature of the human brain, can be found in the brains of other primates as well. We show here for the first time by way of a functional imaging technique that face- and object-selective neurons form spatially distinct clusters at the cellular level in monkey inferotemporal cortex.

View Article and Find Full Text PDF

Immediate-Early Genes are a class of genes that are rapidly up-regulated following neural stimulation. Due to their quality as potential activity markers in the CNS, they have been used extensively in functional mapping studies. At least three genes have been popularly used, including zif268 (Egr1, NGFI, Krox-24, or ZENK), c-fos and recently, Arc.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is the most common form of heritable mental retardation, affecting approximately 1 in 4000 males. The syndrome arises from expansion of a trinucleotide repeat in the 5'-untranslated region of the fragile X mental retardation 1 (FMR1) gene, leading to methylation of the promoter sequence and lack of the fragile X mental retardation protein (FMRP). Affected individuals display a unique neurobehavioural phenotype that includes striking visual-motor deficits.

View Article and Find Full Text PDF

The use of inducible transcription factors for mapping neural activity is now a common procedure. We have previously developed a double-labelling technique that allows visualization of activated neurons after two different stimulation sequences. The technique exploits the differential time course of mRNA versus protein expression of transcription factors.

View Article and Find Full Text PDF