Publications by authors named "Shahin Heidarian"

The main objective of this study is to develop a robust deep learning-based framework to distinguish COVID-19, Community-Acquired Pneumonia (CAP), and Normal cases based on volumetric chest CT scans, which are acquired in different imaging centers using different scanners and technical settings. We demonstrated that while our proposed model is trained on a relatively small dataset acquired from only one imaging center using a specific scanning protocol, it performs well on heterogeneous test sets obtained by multiple scanners using different technical parameters. We also showed that the model can be updated via an unsupervised approach to cope with the data shift between the train and test sets and enhance the robustness of the model upon receiving a new external dataset from a different center.

View Article and Find Full Text PDF

Reverse transcription-polymerase chain reaction is currently the gold standard in COVID-19 diagnosis. It can, however, take days to provide the diagnosis, and false negative rate is relatively high. Imaging, in particular chest computed tomography (CT), can assist with diagnosis and assessment of this disease.

View Article and Find Full Text PDF

Novel Coronavirus disease (COVID-19) is a highly contagious respiratory infection that has had devastating effects on the world. Recently, new COVID-19 variants are emerging making the situation more challenging and threatening. Evaluation and quantification of COVID-19 lung abnormalities based on chest Computed Tomography (CT) images can help determining the disease stage, efficiently allocating limited healthcare resources, and making informed treatment decisions.

View Article and Find Full Text PDF

The newly discovered Coronavirus Disease 2019 (COVID-19) has been globally spreading and causing hundreds of thousands of deaths around the world as of its first emergence in late 2019. The rapid outbreak of this disease has overwhelmed health care infrastructures and arises the need to allocate medical equipment and resources more efficiently. The early diagnosis of this disease will lead to the rapid separation of COVID-19 and non-COVID cases, which will be helpful for health care authorities to optimize resource allocation plans and early prevention of the disease.

View Article and Find Full Text PDF

Novel Coronavirus (COVID-19) has drastically overwhelmed more than 200 countries affecting millions and claiming almost 2 million lives, since its emergence in late 2019. This highly contagious disease can easily spread, and if not controlled in a timely fashion, can rapidly incapacitate healthcare systems. The current standard diagnosis method, the Reverse Transcription Polymerase Chain Reaction (RT- PCR), is time consuming, and subject to low sensitivity.

View Article and Find Full Text PDF

Novel Coronavirus disease (COVID-19) has abruptly and undoubtedly changed the world as we know it at the end of the 2nd decade of the 21st century. COVID-19 is extremely contagious and quickly spreading globally making its early diagnosis of paramount importance. Early diagnosis of COVID-19 enables health care professionals and government authorities to break the chain of transition and flatten the epidemic curve.

View Article and Find Full Text PDF