Dimethyl fumarate (DMF) is a first-line-treatment for relapsing-remitting multiple sclerosis (RRMS). The redox master regulator Nrf2, essential for redox balance, is a target of DMF, but its precise therapeutic mechanisms of action remain elusive. Here we show impact of DMF on circulating monocytes and T cells in a prospective longitudinal RRMS patient cohort.
View Article and Find Full Text PDFThe initiation, commitment, and terminal differentiation of the B cell lineage is stringently controlled by the coordinated action of various transcription factors. Among these, has previously been implicated in regulating early B lymphopoiesis, humoral immune responses to phosphocholine, and furthermore to promote the B1 over the B2 cell lineage. We have now interrogated the function of in the adult mouse using conditional mutagenesis.
View Article and Find Full Text PDFBackground: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by genetic and environmental factors. DNA methylation, an epigenetic mechanism that controls genome activity, may provide a link between genetic and environmental risk factors.
Objective: We sought to identify DNA methylation changes in CD4+ T cells in patients with relapsing-remitting (RR-MS) and secondary-progressive (SP-MS) disease and healthy controls (HC).
Besides its vital role in immunity, the complement system also contributes to the shaping of the synaptic circuitry of the brain. We recently described that soluble Complement Receptor 2 (sCR2) is part of the nerve injury response in rodents. We here study CR2 in context of multiple sclerosis (MS) and explore the molecular effects of CR2 on C3 activation.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
February 2016
Objective: We aimed to examine the regulation of lipocalin-2 (LCN2) in multiple sclerosis (MS) and its potential functional relevance with regard to myelination and neurodegeneration.
Methods: We determined LCN2 levels in 3 different studies: (1) in CSF and plasma from a case-control study comparing patients with MS (n = 147) with controls (n = 50) and patients with relapsing-remitting MS (n = 75) with patients with progressive MS (n = 72); (2) in CSF and brain tissue microdialysates from a case series of 7 patients with progressive MS; and (3) in CSF at baseline and 60 weeks after natalizumab treatment in a cohort study of 17 patients with progressive MS. Correlation to neurofilament light, a marker of neuroaxonal injury, was tested.
Background: Activation of the complement system has been implicated in both acute and chronic states of neurodegeneration. However, a detailed understanding of this complex network of interacting components is still lacking.
Methods: Large-scale global expression profiling in a rat F2(DAxPVG) intercross identified a strong cis-regulatory influence on the local expression of complement receptor 2 (Cr2) in the spinal cord after ventral root avulsion (VRA).
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system, with a high rate of neurocognitive symptoms for which the molecular background is still uncertain. There is accumulating evidence for dysregulation of the kynurenine pathway (KP) in different psychiatric and neurodegenerative conditions. We here report the first comprehensive analysis of cerebrospinal fluid (CSF) kynurenine metabolites in MS patients of different disease stages and in relation to neurocognitive symptoms.
View Article and Find Full Text PDFDysregulation of the complement system is evident in many CNS diseases but mechanisms regulating complement activation in the CNS remain unclear. In a recent large rat genome-wide expression profiling and linkage analysis we found co-regulation of complement C3 immediately downstream of butyrylcholinesterase (BuChE), an enzyme hydrolyzing acetylcholine (ACh), a classical neurotransmitter with immunoregulatory effects. We here determined levels of neurofilament-light (NFL), a marker for ongoing nerve injury, C3 and activity of the two main ACh hydrolyzing enzymes, acetylcholinesterase (AChE) and BuChE, in cerebrospinal fluid (CSF) from patients with MS (n = 48) and non-inflammatory controls (n = 18).
View Article and Find Full Text PDFThe complement system is activated in a wide spectrum of CNS diseases and is suggested to play a role in degenerative phenomena such as elimination of synaptic terminals. Still, little is known of mechanisms regulating complement activation in the CNS. Loss of synaptic terminals in the spinal cord after an experimental nerve injury is increased in the inbred DA strain compared with the PVG strain and is associated with expression of the upstream complement components C1q and C3, in the absence of membrane attack complex activation and neutrophil infiltration.
View Article and Find Full Text PDFAcetylcholine (ACh), the classical neurotransmitter, also affects a variety of nonexcitable cells, such as endothelia, microglia, astrocytes and lymphocytes in both the nervous system and secondary lymphoid organs. Most of these cells are very distant from cholinergic synapses. The action of ACh on these distant cells is unlikely to occur through diffusion, given that ACh is very short-lived in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), two extremely efficient ACh-degrading enzymes abundantly present in extracellular fluids.
View Article and Find Full Text PDFButyrylcholinesterase (BuChE) activity is associated with activated astrocytes in Alzheimer's disease brain. The BuChE-K variant exhibits 30%-60% reduced acetylcholine (ACh) hydrolyzing capacity. Considering the increasing evidence of an immune-regulatory role of ACh, we investigated if genetic heterogeneity in BuChE affects cerebrospinal fluid (CSF) biomarkers of inflammation and cholinoceptive glial function.
View Article and Find Full Text PDFBackground: C-type lectin (CLEC) receptors are important for initiating and shaping immune responses; however, their role in inflammatory reactions in the central nervous system after traumatic injuries is not known. The antigen-presenting lectin-like receptor gene complex (Aplec) contains a few CLEC genes, which differ genetically among inbred rat strains. It was originally thought to be a region that regulates susceptibility to autoimmune arthritis, autoimmune neuroinflammation and infection.
View Article and Find Full Text PDFIncreasing evidence suggests that genetic background affects outcome of traumatic brain injuries (TBI). Still, there is limited detailed knowledge on what pathways/processes are affected by genetic heterogeneity. The inbred rat strains DA and PVG differ in neuronal survival following TBI.
View Article and Find Full Text PDFAim: Genetic factors are important for outcome after traumatic brain injury (TBI), although exact knowledge of relevant genes/pathways is still lacking. We here used an unbiased approach to define differentially activated pathways between the inbred DA and PVG rat strains. The results prompted us to study further if a naturally occurring genetic variation in glutathione-S-transferase alpha 4 (Gsta4) affects the outcome after TBI.
View Article and Find Full Text PDFGenetic regulation of autoimmune neuroinflammation is a well known phenomenon, but genetic influences on inflammation following traumatic nerve injuries have received little attention. In this study we examined the inflammatory response in a rat traumatic brain injury (TBI) model, with a particular focus on major histocompatibility class II (MHC II) presentation, in two inbred rat strains that have been extensively characterized in experimental autoimmune encephalomyelitis (EAE); DA and PVG. In addition, MHC and Vra4 congenic strains on these backgrounds were studied to give information on MHC and non-MHC gene contribution.
View Article and Find Full Text PDF