Drought stress has a significant impact on agricultural productivity, affecting key crops such as soybeans, the second most widely cultivated crop in the United States. Endophytic and rhizospheric microbial diversity analyses were conducted with soybean plants cultivated during the 2023 growing season amid extreme weather conditions of prolonged high temperatures and drought in Louisiana. Specifically, surviving and non-surviving soybean plants were collected from two plots of a Louisiana soybean field severely damaged by extreme heat and drought conditions in 2023.
View Article and Find Full Text PDFSubmerged plants can thrive entirely underwater, playing a crucial role in maintaining water quality, supporting aquatic organisms, and enhancing sediment stability. However, they face multiple challenges, including reduced light availability, fluctuating water conditions, and limited nutrient access. Despite these stresses, submerged plants demonstrate remarkable resilience through physiological and biochemical adaptations.
View Article and Find Full Text PDFHidradenitis suppurativa (HS) is a chronic, debilitating inflammatory skin disease with a poorly understood immunopathogenesis. Here, we report that HS lesional skin is characterized by the expansion of innate lymphocytes and T cells expressing CD2, an essential activation receptor and adhesion molecule. Lymphocytes expressing elevated CD2 predominated with unique spatial distribution throughout the epidermis and hypodermis in the HS lesion.
View Article and Find Full Text PDFSalt marshes are highly dynamic and biologically diverse ecosystems that serve as natural habitats for numerous salt-tolerant plants (halophytes). We investigated the bacterial communities associated with the roots and leaves of plants growing in the coastal salt marshes of the Bayfront Beach, located in Mobile, Alabama, United States. We compared external (epiphytic) and internal (endophytic) communities of both leaf and root plant organs.
View Article and Find Full Text PDFTrends Plant Sci
November 2024
Duckweed () rises as a crucial model system due to its unique characteristics and wide-ranging utility. The significance of physiological research and phytoremediation highlights the intricate potential of duckweed in the current era of plant biology. Special attention to duckweed has been brought due to its distinctive features of nutrient uptake, ion transport dynamics, detoxification, intricate signaling, and stress tolerance.
View Article and Find Full Text PDFMelanocyte stem cells (McSCs) of the hair follicle are a rare cell population within the skin and are notably underrepresented in whole-skin, single-cell RNA sequencing (scRNA-seq) datasets. Using a cell enrichment strategy to isolate KIT+/CD45- cells from the telogen skin of adult female C57BL/6J mice, we evaluated the transcriptional landscape of quiescent McSCs (qMcSCs) at high resolution. Through this evaluation, we confirmed existing molecular signatures for qMcCS subpopulations (e.
View Article and Find Full Text PDFUnlabelled: Melanocyte stem cells (McSCs) of the hair follicle are a rare cell population within the skin and are notably underrepresented in whole-skin, single-cell RNA sequencing (scRNA-seq) datasets. Using a cell enrichment strategy to isolate KIT+/CD45-cells from the telogen skin of adult female C57BL/6J mice, we evaluated the transcriptional landscape of quiescent McSCs (qMcSCs) at high resolution. Through this evaluation, we confirmed existing molecular signatures for qMcCS subpopulations (e.
View Article and Find Full Text PDFMore than 20% of the population across the world is affected by non-communicable inflammatory skin diseases including psoriasis, atopic dermatitis, hidradenitis suppurativa, rosacea, etc. Many of these chronic diseases are painful and debilitating with limited effective therapeutic interventions. However, recent advances in psoriasis treatment have improved the effectiveness and provide better management of the disease.
View Article and Find Full Text PDFHidradenitis suppurativa (HS) is a chronic debilitating inflammatory skin disease with poorly understood pathogenesis. Single-cell RNAseq analysis of HS lesional and healthy individual skins revealed that NKT and NK cell populations were greatly expanded in HS, and they expressed elevated CD2, an activation receptor. Immunohistochemistry analyses confirmed significantly expanded numbers of CD2+ cells distributed throughout HS lesional tissue, and many co-expressed the NK marker, CD56.
View Article and Find Full Text PDFTo identify sets of genes that exhibit similar expression characteristics, co-expression networks were constructed from transcriptome datasets that were obtained from plant samples at various stages of growth and development or treated with diverse biotic, abiotic, and other environmental stresses. In addition, co-expression network analysis can provide deeper insights into gene regulation when combined with transcriptomics. The coordination and integration of all these complex networks to deduce gene regulation are major challenges for plant biologists.
View Article and Find Full Text PDFIntroduction: Our study aimed to evaluate whether assessing α-synuclein expression levels in blood samples could provide a reliable and straightforward alternative to existing diagnostic and prognostic methods for neurodegenerative disorders, including multiple sclerosis (MS). We specifically investigated if α-synuclein and IL-6 expression levels from serum and peripheral blood mononuclear cells (PBMCs) could accurately predict MS severity in patients using a two-dimensional approach.
Methods: We designed a case-control study to analyze the expression of α-synuclein and IL-6 in the peripheral blood of an MS patient group (n = 51) and a control group (n = 51).
A cell's various components interact with each other in a coordinated manner to respond to environmental cues and intracellular signals. Compared to the other biological networks, the protein-protein interaction (PPI) is mostly responsible for maintaining signaling pathways. Increasing numbers of experimentally verified and predicted PPIs in plants demand a scalable platform to deal with large and complex datasets.
View Article and Find Full Text PDFIn recent years, extracting information from biological data has become a particularly valuable way of gaining knowledge. Molecular interaction networks provide a framework for visualizing cellular processes, but their complexity frequently makes their interpretation difficult. Proteins are one of the primary determinants of biological function.
View Article and Find Full Text PDFAs the protein-protein interaction (PPI) data increase exponentially, the development and usage of computational methods to analyze these datasets have become a new research horizon in systems biology. The PPI network analysis and visualization can help identify functional modules of the network, pathway genes involved in common cellular functions, and functional annotations of novel genes. Currently, a variety of tools are available for network graph visualization and analysis.
View Article and Find Full Text PDFMechanistic modeling of cancers such as Medullary Thyroid Carcinoma (MTC) to emulate patient-specific phenotypes is challenging. The discovery of potential diagnostic markers and druggable targets in MTC urgently requires clinically relevant animal models. Here we established orthotopic mouse models of MTC driven by aberrantly active Cdk5 using cell-specific promoters.
View Article and Find Full Text PDFOrphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The discovery of OGs was first made through comparative genomics followed by the identification of unique genes across different species.
View Article and Find Full Text PDFHidradenitis suppurativa (HS) is a skin disorder that causes chronic painful inflammation and hyperproliferation, often with the comorbidity of invasive keratoacanthoma (KA). Our research, employing high-resolution immunofluorescence and data science approaches together with confirmatory molecular analysis, has identified that the 5'-cap-dependent protein translation regulatory complex eIF4F is a key factor in the development of HS and is responsible for regulating follicular hyperproliferation. Specifically, eIF4F translational targets, Cyclin D1 and c-MYC, orchestrate the development of HS-associated KA.
View Article and Find Full Text PDFBiological networks are often large and complex, making it difficult to accurately identify the most important nodes. Node prioritization algorithms are used to identify the most influential nodes in a biological network by considering their relationships with other nodes. These algorithms can help us understand the functioning of the network and the role of individual nodes.
View Article and Find Full Text PDFDrought is one of the most serious abiotic stressors in the environment, restricting agricultural production by reducing plant growth, development, and productivity. To investigate such a complex and multifaceted stressor and its effects on plants, a systems biology-based approach is necessitated, entailing the generation of co-expression networks, identification of high-priority transcription factors (TFs), dynamic mathematical modeling, and computational simulations. Here, we studied a high-resolution drought transcriptome of .
View Article and Find Full Text PDFMillions of traumatic brain injuries (TBIs) occur annually. TBIs commonly result from falls, traffic accidents, and sports-related injuries, all of which involve rotational acceleration/deceleration of the brain. During these injuries, the brain endures a multitude of primary insults including compression of brain tissue, damaged vasculature, and diffuse axonal injury.
View Article and Find Full Text PDFWhile recent advances in plant single-cell RNA sequencing (scRNA-seq) have made numerous strides in identifying novel regulatory events, transcriptional profiling of certain cell types, such as phloem poles, has not yet been thoroughly investigated. A recent article by Otero et al. utilized cell-type specific marker lines and a second-generation single-cell approach to uncover transcriptomic landscapes specifying protophloem-adjacent cells, as well as identify a set of important transcription factors (TFs) signifying early phloem development.
View Article and Find Full Text PDF