High fat diet (HFD) is a prime factor, which contributes to the present epidemic of metabolic syndrome. Prolonged intake of HFD induces oxidative stress (OS) that in turn causes neuroinflammation, neurodegeneration, insulin resistance, amyloid burden, synaptic dysfunction and cognitive impairment hence leading to Alzheimer's disease neuropathy. Melatonin (secreted by the Pineal gland) has the potential to nullify the toxic effects of reactive oxygen species (ROS) and have been shown to ameliorate various complications induced by HFD in rodent models.
View Article and Find Full Text PDFBackground: Cadmium chloride (Cd) is a pervasive environmental heavy metal pollutant linked to mitochondrial dysfunction, memory loss, and genetic disorders, particularly in the context of neurodegenerative diseases like Alzheimer's disease (AD).
Methods: This study investigated the neurotherapeutic potential of vitamin B6 (Vit. B6) in mitigating Cd-induced oxidative stress and neuroinflammation-mediated synaptic and memory dysfunction.
Ethanol administration triggers an inflammatory response that leads to a complex series of immune responses including the release of an excessive amount of inflammatory mediators particularly tumor necrosis factor (TNF-α) and nuclear factor-kB (NF-KB) which produce a large amount of reactive oxygen species. The inflammatory-induced cytotoxicity is increased when the PI3-kinase/Akt pathway is inhibited. Some studies have also shown that ethanol suppresses the PI3-kinase signaling pathway induced by receptor activation.
View Article and Find Full Text PDFIn the current study, we examined the antioxidant activity and anti-amyloidogenic potential of 6-aminoflavone in an adult mice model of d-galactose-induced aging. Male albino eight-week-old mice were assigned into four groups: 1. the control group (saline-treated), 2.
View Article and Find Full Text PDFNo effective drug treatment is available for Alzheimer disease, thus the need arise to develop efficient drugs for its treatment. Natural products have pronounced capability in treating Alzheimer disease therefore current study aimed to evaluate the neuro-protective capability of folicitin against scopolamine-induced Alzheimer disease neuropathology in mice. Experimental mice were divided into four groups i.
View Article and Find Full Text PDFTraumatic Brain Injury (TBI) remains one of the prevailing disorders that affect millions of people around the globe. There is a cascade of secondary attributes attached to TBI including excitotoxicity, axonal degeneration, neuroinflammation, oxidative stress, and apoptosis. Neuroinflammation is caused due to the activation of microglia along with pro-inflammatory cytokines.
View Article and Find Full Text PDFAlzheimer's disease (AD) is globally recognized as a prominent cause of dementia for which efficient treatment is still lacking. New candidate compounds that are biologically potent are regularly tested. We, therefore, hypothesized to study the neuroprotective potential of Zinc Ortho Methyl Carbonodithioate (thereafter called ZOMEC) against Scopolamine (SCOP) induced Alzheimer's disease (AD) model using adult albino mice.
View Article and Find Full Text PDFA new mechanistic approach to overcome the neurodegenerative disorders caused by oxidative stress in Alzheimer's disease (AD) is highly stressed in this article. Thus, a newly formulated drug (zinc -methyl carbonodithioate (ZOMEC)) was investigated for five weeks on seven-week-old BALB/c male mice. ZOMEC 30 mg/kg was postadministered intraperitoneally during the third week of pentylenetetrazole (PTZ) injection.
View Article and Find Full Text PDFOxidative stress (OS) and c-Jun N-terminal kinase (JNK) are both key indicators implicated in neuro-inflammatory signalling pathways and their respective neurodegenerative diseases. Drugs targeting these factors can be considered as suitable candidates for treatment of neuronal dysfunction and memory impairment. The present study encompasses beneficial effects of a naturally occurring triterpenoid, friedelin, against scopolamine-induced oxidative stress and neurodegenerative pathologies in mice models.
View Article and Find Full Text PDFAim: The purpose of the study was to assess biological and esthetic outcomes of immediate dental implant in esthetic zone with the adjunct pretreatment of immediate implants with photofunctionalization or platelet-rich plasma in comparison to standard tapered root form implant without pretreatment.
Settings And Design: Patients visiting department of Prosthodontics of a tertiary care health Institution. Design of the study was randomized controlled trial.
Neurodegenerative diseases (NDs) extend the global health burden. Consumption of alcohol as well as maternal exposure to ethanol can damage several neuronal functions and cause cognition and behavioral abnormalities. Ethanol induces oxidative stress that is linked to the development of NDs.
View Article and Find Full Text PDFNLRP3-PYD inflammasome activates an inflammatory pathway in response to a wide variety of cell damage or infections. Dysregulated NLRP3 inflammatory signaling has many chronic inflammatory and autoimmune disorders. NLRP3 and ASC have a PYD, a superfamily member of the Death Domain, which plays a key role in inflammatory assembly.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disorder typified by several neuropathological features including amyloid-beta (A) plaque and neurofibrillary tangles (NFTs). Cholesterol retention and oxidative stress (OS) are the major contributors of elevated - and -secretase activities, leading to excessive A deposition, signifying the importance of altered cholesterol homeostasis and OS in the progression of A-mediated neurodegeneration and cognitive deficit. However, the effect of A on cholesterol metabolism is lesser-known.
View Article and Find Full Text PDFVitamin D (Vt. D) is one of the vital hormone having multiple functions in various tissues, including brain. Several evidences reported that Vt.
View Article and Find Full Text PDFOxidative stress has been considered the main mediator in neurodegenerative disease and in normal aging processes. Several studies have reported that the accumulation of reactive oxygen species (ROS), elevated oxidative stress, and neuroinflammation result in cellular malfunction. These conditions lead to neuronal cell death in aging-related neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease.
View Article and Find Full Text PDFAll over the world, metabolic syndrome constitutes severe health problems. Multiple factors have been reported in the pathogenesis of metabolic syndrome. Metabolic disorders result in reactive oxygen species (ROS) induced oxidative stress, playing a vital role in the development and pathogenesis of major health issues, including neurological disorders Alzheimer's disease (AD) Parkinson's disease (PD).
View Article and Find Full Text PDFAlzheimer's disease is a major neurodegenerative disease characterized by memory loss and cognitive deficits. Recently, we reported that osmotin, which is a homolog of adiponectin, improved long-term potentiation and cognitive functions in Alzheimer's disease mice. Several lines of evidence have suggested that Nogo-A and the Nogo-66 receptor 1 (NgR1), which form a complex that inhibits long-term potentiation and cognitive function, might be associated with the adiponectin receptor 1 (AdipoR1), which is a receptor for osmotin.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prevalent age-related neurodegenerative disease, pathologically characterized by the accumulation of aggregated amyloid beta (Aβ) in the brain. Here, we describe for the first time the development of a new, pioneering nanotechnology-based drug delivery approach for potential therapies for neurodegenerative diseases, particularly AD. We demonstrated the delivery of fluorescent carboxyl magnetic Nile Red particles (FMNPs) to the brains of normal mice using a functionalized magnetic field (FMF) composed of positive- and negative-pulsed magnetic fields generated by electromagnetic coils.
View Article and Find Full Text PDFGrowing evidences reveal that 17β-estradiol has a wide variety of neuroprotective potential. Recently, it has been shown that 17β-estradiol can limit ethanol-induced neurotoxicity in neonatal rats. Whether it can stimulate SIRT1 signaling against ethanol intoxicity in developing brain remain elusive.
View Article and Find Full Text PDFIncreasing evidence demonstrates that β-amyloid (Aβ) elicits oxidative stress, which contributes to the pathogenesis and disease progression of Alzheimer's disease (AD). The aims of the present study were to determine and explore the antioxidant nature and potential mechanism of vanillic acid (VA) in Aβ-induced oxidative stress and neuroinflammation mediated cognitive impairment in mice. An intracerebroventricular (i.
View Article and Find Full Text PDFBackground: Glutamate-induced excitotoxicity, oxidative damage, and neuroinflammation are believed to play an important role in the development of a number of CNS disorders. We recently reported that a high dose of glutamate could induce AMPK-mediated neurodegeneration in the postnatal day 7 (PND7) rat brain. Yet, the mechanism of glutamate-induced oxidative stress and neuroinflammation in the postnatal brain is not well understood.
View Article and Find Full Text PDFAims: Lipopolysaccharide (LPS) induces oxidative stress and neuroinflammation both in vivo and in vitro. Here, we provided the first detailed description of the mechanism of melatonin neuroprotection against LPS-induced oxidative stress, acute neuroinflammation, and neurodegeneration in the hippocampal dentate gyrus (DG) region of the postnatal day 7 (PND7) rat brain.
Methods: The neuroprotective effects of melatonin against LPS-induced neurotoxicity were analyzed using multiple research techniques, including Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays (ELISAs) in PND7 rat brain homogenates and BV2 cell lysates in vitro.
Here we investigated for the first time the inhibitory potential of Glycine (Gly) against ethanol-induced oxidative stress, neuroinflammation and apoptotic neurodegeneration in human neuroblastoma SH-SY5Y cells and in the developing rat brain. The Gly co-treatment significantly increased the cell viability, inhibited the expression of phospho-Nuclear Factor kappa B (p-NF-kB) and caspase-3 and reduced the oxidative stress in ethanol-treated SH-SY5Y cells in a PI3K-dependent manner. Seven days old male rat pups were injected with ethanol (5 g/kg subcutaneously, prepared in a 20% saline solution) and Gly (1 g/kg).
View Article and Find Full Text PDF