Ceramics are the oxides of metals and nonmetals with excellent compressive strength. Ceramics usually exhibit inert behavior at high temperatures. Magnesium aluminate (MgAl2O4), a member of the ceramic family, possesses a high working temperature up to 2000°C, low thermal conductivity, high strength even at elevated temperatures, and good corrosion resistance.
View Article and Find Full Text PDFSingle-cell genomics enables dissection of tumor heterogeneity and molecular underpinnings of drug response at an unprecedented resolution. However, broad clinical application of these methods remains challenging, due to several practical and preanalytical challenges that are incompatible with typical clinical care workflows, namely the need for relatively large, fresh tissue inputs. In the present study, we show that multimodal, single-nucleus (sn)RNA/T cell receptor (TCR) sequencing, spatial transcriptomics and whole-genome sequencing (WGS) are feasible from small, frozen tissues that approximate routinely collected clinical specimens (for example, core needle biopsies).
View Article and Find Full Text PDFMetastatic uveal melanoma (mUM) is an advanced ocular malignancy characterized by a hepatotropic pattern of spread. As the incidence of brain metastases (BM) in mUM patients has been thought to be low, routine CNS surveillance has not been recommended. Notably, no formal assessment of BM incidence in mUM has to date been published to support this clinical practice.
View Article and Find Full Text PDFMelanoma brain metastasis (MBM) frequently occurs in patients with advanced melanoma; yet, our understanding of the underlying salient biology is rudimentary. Here, we performed single-cell/nucleus RNA-seq in 22 treatment-naive MBMs and 10 extracranial melanoma metastases (ECMs) and matched spatial single-cell transcriptomics and T cell receptor (TCR)-seq. Cancer cells from MBM were more chromosomally unstable, adopted a neuronal-like cell state, and enriched for spatially variably expressed metabolic pathways.
View Article and Find Full Text PDFIpilimumab and radiotherapy are commonly used to treat unresectable and metastatic melanoma. Results from preclinical studies and case reports suggest a biologic interaction between these two treatments. To understand the clinical implications of the interaction, we carried out a retrospective study reviewing records of patients treated with ipilimumab and radiotherapy for melanoma at our institution between 2005 and 2011.
View Article and Find Full Text PDF