Publications by authors named "Shaheen Shojania"

Endogenous and exogenous sulfated polysaccharides exhibit potent biological activities, including inhibiting blood coagulation and protein interactions. Controlled chemical sulfation of alternative polysaccharides holds promise to overcome limited availability and heterogeneity of naturally sulfated polysaccharides. Here, we established reaction parameters for the controlled sulfation of the abundant cereal polysaccharide, mixed-linkage β(1,3)/β(1,4)-glucan (MLG), using Box-Behnken Design of Experiments (BBD) and Response Surface Methodology (RSM).

View Article and Find Full Text PDF

The large xyloglucan endotransglycosylase/hydrolase (XTH) gene family continues to be the focus of much attention in studies of plant cell wall morphogenesis due to the unique catalytic functions of the enzymes it encodes. The XTH gene products compose a subfamily of glycoside hydrolase family 16 (GH16), which also comprises a broad range of microbial endoglucanases and endogalactanases, as well as yeast cell wall chitin/β-glucan transglycosylases. Previous whole-family phylogenetic analyses have suggested that the closest relatives to the XTH gene products are the bacterial licheninases (EC 3.

View Article and Find Full Text PDF

SH2 domain-containing inositol-5'-phosphatase-1 (SHIP1) inhibits inflammation by hydrolyzing phosphoinositide-3'-kinase generated membrane phosphatidylinositol-3,4,5-trisphosphate (PIP(3)). Bioinformatic analysis of SHIP1 from multiple species revealed a pleckstrin homololgy-related (PH-R) domain, which we hypothesize mediates SHIP1's association with the membrane, a requirement for its biological function. Recombinant murine SHIP1 PH-R domain was subjected to biophysical and biochemical analysis.

View Article and Find Full Text PDF

The human immunodeficiency virus type 1 (HIV-1) genome encodes 18 proteins and 2 peptides. Four of these proteins encode high-affinity calmodulin-binding sites for which direct interactions with calmodulin have already been described. In this study, the HIV-1 proteome is queried using an algorithm that predicts calmodulin-binding sites revealing seven new putative calmodulin-binding sites including residues 34-56 of the transactivator of transcription (Tat).

View Article and Find Full Text PDF

The type 1 Human Immunodeficiency Virus transcriptional regulator Tat is a small RNA-binding protein essential for viral gene expression and replication. The protein binds to a large number of proteins within infected cells and non-infected cells, and has been demonstrated to impact a wide variety of cellular activities. Early circular dichroism studies showed a lack of regular secondary structure in the protein whereas proton NMR studies suggested several different conformations.

View Article and Find Full Text PDF

The HIV-1 transactivator of transcription (Tat) is a protein essential for virus replication. Tat is an intrinsically disordered RNA-binding protein that, in cooperation with host cell factors cyclin T1 and cyclin-dependent kinase 9, regulates transcription at the level of elongation. Tat also interacts with numerous other intracellular and extracellular proteins, and is implicated in a number of pathogenic processes.

View Article and Find Full Text PDF

Tat (transactivator of transcription) is a small RNA-binding protein that plays a central role in the regulation of human immunodeficiency virus type 1 replication and in approaches to treating latently infected cells. Its interactions with a wide variety of both intracellular and extracellular molecules is well documented. A molecular understanding of the multitude of Tat activities requires a determination of its structure and interactions with cellular and viral partners.

View Article and Find Full Text PDF