Understanding how living tissues respond to changes in their mechanical environment is a key question in evolutionary biology. Invasive species provide an ideal model for this as they are often transplanted between environments that differ drastically in their ecological and environmental context. Spatial sorting, the name given to the phenomenon driving differences between individuals at the core and edge of an expanding range, has been demonstrated to impact the morphology and physiology of Xenopus laevis from the invasive French population.
View Article and Find Full Text PDFThe traditional understanding of bone mechanosensation implicates osteocytes, canaliculi, and the lacunocanalicular network in biomechanical adaptation. However, recent findings challenge this notion, as shown in advanced teleost fish where anosteocytic bone lacking osteocytes are nevertheless responsive to mechanical load. To investigate specific molecular mechanisms involved in bone mechanoadaptation in osteocytic and anosteocytic fish bone, we conducted a 5-min single swim-training experiment with zebrafish and ricefish, respectively.
View Article and Find Full Text PDFVertebrate mineralized tissues, present in bones, teeth and scales, have complex 3D hierarchical structures. As more of these tissues are characterized in 3D using mainly FIB SEM at a resolution that reveals the mineralized collagen fibrils and their organization into collagen fibril bundles, highly complex and diverse structures are being revealed. In this perspective we propose an approach to analyzing these tissues based on the presence of modular structures: material textures, pore shapes and sizes, as well as extents of mineralization.
View Article and Find Full Text PDFThe palette of mineralized tissues in fish is wide, and this is particularly apparent in fish dentin. While the teeth of all vertebrates except fish contain a single dentinal tissue type, called orthodentin, dentin in the teeth of fish can be one of several different tissue types. The most common dentin type in fish is orthodentin.
View Article and Find Full Text PDFBone material contains a hierarchical network of micro- and nano-cavities and channels, known as the lacuna-canalicular network (LCN), that is thought to play an important role in mechanobiology and turnover. The LCN comprises micrometer-sized lacunae, voids that house osteocytes, and submicrometer-sized canaliculi that connect bone cells. Characterization of this network in three dimensions is crucial for many bone studies.
View Article and Find Full Text PDFScales are structures composed of mineralized collagen fibrils embedded in the skin of fish. Here we investigate structures contributing to the bulk of the scale material of the sturgeon (Acipencer guldenstatii) at the millimeter, micrometer and nanometer length scales. Polished and fracture surfaces were prepared in each of the three anatomic planes for imaging with light and electron microscopy, as well as focused ion beam - scanning electron microscopy (FIB-SEM).
View Article and Find Full Text PDFTeeth are composed of the hardest tissues in the vertebrate body and have been studied extensively to infer diet in vertebrates. The morphology and structure of enamel is thought to reflect feeding ecology. Snakes have a diversified diet, some species feed on armored lizards, others on soft invertebrates.
View Article and Find Full Text PDFThe structure, composition, and shape of teeth have been related to dietary specialization in many vertebrate species, but comparative studies on snakes' teeth are lacking. Yet, snakes have diverse dietary habits that may impact the shape of their teeth. We hypothesize that prey properties, such as hardness and shape, as well as feeding behavior, such as aquatic or arboreal predation, or holding vigorous prey, impose constraints on the evolution of tooth shape in snakes.
View Article and Find Full Text PDFObjectives: To compare inpatient burden (i.e. likelihood of hospitalization, number of admissions and length of stay) in persons with newly diagnosed dementia to the general population without dementia.
View Article and Find Full Text PDFIntroduction: Sirtuin 1 (SIRT1) is a key player in aging and metabolism and regulates bone mass and architecture. Sexual dimorphism in skeletal effects of SIRT1 has been reported, with an unfavorable phenotype primarily in female mice.
Methods: To investigate the mechanisms of gender differences in SIRT1 skeletal effect, we investigated femoral and vertebral cortical and cancellous bone in global Sirt1 haplo-insufficient 129/Sv mice aged 2,7,12 months lacking exons 5,6,7 ( ) and their wild type (WT) counterparts.
The gelatinases, a subgroup of the matrix metalloproteinases (MMPs) superfamily are composed of two members; MMP2 and MMP9. They are known to degrade gelatin among other components of the extracellular matrix. Recently, the two gelatinases were found to be necessary for neural crest cell migration and to compensate for each other loss in these cells.
View Article and Find Full Text PDFDietary protein is necessary throughout all life stages. Adequate intake of protein during juvenile years is essential to enable appropriate synthesis of bone matrix and achieve the full peak bone mass (PBM). Due to socio-demographic changes, accompanied by environmental damage and ethical problems, a transition to the consumption of different and alternative protein sources in the human diet must occur.
View Article and Find Full Text PDFWe systematically reviewed the association between objective sleep quality and postural control based on objective measurements. We searched the electronic databases PUBMED, CINAHL, SCOPUS and Web of Science for studies assessing the relationship between objective measurements of sleep and postural control or gait performance among adults above age 18. All types of articles until April 2020 were considered.
View Article and Find Full Text PDFBone is a fascinating biomaterial composed mostly of type-I collagen fibers as an organic phase, apatite as an inorganic phase, and water molecules residing at the interfaces between these phases. They are hierarchically organized with minor constituents such as non-collagenous proteins, citrate ions and glycosaminoglycans into a composite structure that is mechanically durable yet contains enough porosity to accommodate cells and blood vessels. The nanometer scale organization of the collagen fibrous structure and the mineral constituents in bone were recently extensively scrutinized.
View Article and Find Full Text PDFThe severe impairment of bone development and quality was recently described as a new target for unbalanced ultra-processed food (UPF). Here, we describe nutritional approaches to repair this skeletal impairment in rats: supplementation with micro-nutrients and a rescue approach and switching the UPF to balanced nutrition during the growth period. The positive effect of supplementation with multi-vitamins and minerals on bone growth and quality was followed by the formation of mineral deposits on the rats' kidneys and modifications in the expression of genes involved in inflammation and vitamin-D metabolism, demonstrating the cost of supplementation.
View Article and Find Full Text PDFToday's eating patterns are characterized by the consumption of unbalanced diets (UBDs) resulting in a variety of health consequences on the one hand, and the consumption of dietary supplements in order to achieve overall health and wellness on the other. Balanced nutrition is especially crucial during childhood and adolescence as these time periods are characterized by rapid growth and development of the skeleton. We show the harmful effect of UBD on longitudinal bone growth, trabecular and cortical bone micro-architecture and bone mineral density; which were analyzed by micro-CT scanning.
View Article and Find Full Text PDFUltra processed foods (UPF) consumption is becoming dominant in the global food system, to the point of being the most recent cause of malnutrition. Health outcomes of this diet include obesity and metabolic syndrome; however, its effect on skeletal development has yet to be examined. This project studied the influence of UPF diet on the development and quality of the post-natal skeleton.
View Article and Find Full Text PDFThe teeth of actinopterygian fish, like those of mammals, consist of a thin outer hyper-mineralized layer (enamel or enameloid) that surrounds a core of dentin. While all mammalian species have a single type of dentin (called orthodentin), various dentin types have been reported in the teeth of actinopterygian fish. The most common type of actinopterygian fish dentin is orthodentin.
View Article and Find Full Text PDFSpatio-temporal parameters of human gait, currently measured using different methods, provide valuable information on health. Inertial Measurement Units (IMUs) are one such method of gait analysis, with smartphone IMUs serving as a good substitute for current gold-standard techniques. Here we investigate the concurrent validity of a smartphone placed in a front-facing pocket to perform gait analysis.
View Article and Find Full Text PDFNat Rev Endocrinol
May 2021
A thorough knowledge of the structures of healthy mineralized tissues, such as bone or cartilage, is key to understanding the pathological changes occurring during disease. Such knowledge enables the underlying mechanisms that are responsible for pathology to be pinpointed. One high-resolution 3D method in particular - focused ion beam-scanning electron microscopy (FIB-SEM) - has fundamentally changed our understanding of healthy vertebrate mineralized tissues.
View Article and Find Full Text PDFUltra-processed foods have known negative implications for health; however, their effect on skeletal development has never been explored. Here, we show that young rats fed ultra-processed food rich in fat and sugar suffer from growth retardation due to lesions in their tibial growth plates. The bone mineral density decreases significantly, and the structural parameters of the bone deteriorate, presenting a sieve-like appearance in the cortices and poor trabecular parameters in long bones and vertebrae.
View Article and Find Full Text PDFBackground: Post-menopausal osteoporosis is a common health problem worldwide, most commonly caused by estrogen deficiency. Most of the information regarding the skeletal effects of this disease relates to trabecular bone, while cortical bone is less studied. The purpose of this study was to evaluate the influence of estrogen deficiency on the structure and mechanical properties of cortical bone.
View Article and Find Full Text PDF