Lipid emulsions (LEs) with tailored digestibility have the potential to modulate satiation or act as delivery systems for lipophilic nutrients and drugs. The digestion of LEs is governed by their interfacial emulsifier layer which determines their gastric structuring and accessibility for lipases. A plethora of LEs that potentially modulate digestion have been proposed in recent years, however, validations of altered LE digestion remain scarce.
View Article and Find Full Text PDFIncreasing the availability and reliability of community water sources is a primary pathway through which many water supply interventions aim to achieve health gains in communities with limited access to water. While previous studies in rural settings have shown that greater access to water is associated both with increased overall consumption of water and use of water for hygiene related activities, there is limited evidence from urban environments. Using data collected from 1253 households during the evaluation of a community water supply governance and hygiene promotion intervention in the cities of Goma and Bukavu, Democratic Republic of Congo, we conducted a secondary analysis to determine the impact of these interventions on household water collection and use habits.
View Article and Find Full Text PDFA better understanding of how dietary lipids are processed by the human body is necessary to allow for the control of satiation and energy intake by tailored lipid systems. To examine whether rats are a valid model of human dietary lipid processing and therefore useful for further mechanistic studies in this context, we tested in rats three lipid emulsions of different stability, which alter satiety responses in humans. Different sets of 15 adult male Sprague Dawley rats, equipped with gastric catheters alone or combined with hepatic portal vein (HPV) and vena cava (VC) catheters were maintained on a medium-fat diet and adapted to an 8 h deprivation/16 h feeding schedule.
View Article and Find Full Text PDFStudies indicate that modulating enterocyte metabolism might affect whole body glucose homeostasis and the development of diet-induced obesity (DIO). We tested whether enhancing enterocyte fatty acid oxidation (FAO) could protect mice from DIO and impaired glycemic control. To this end, we used mice expressing a mutant form of carnitine palmitoyltransferase-1a (CPT1mt), insensitive to inhibition by malonyl-CoA, in their enterocytes (iCPT1mt) and fed them low-fat control diet (CD) or high-fat diet (HFD) chronically.
View Article and Find Full Text PDFThe endogenous peroxisome proliferator-activated receptor alpha (PPAR-α) agonist Oleoylethanolamide (OEA) inhibits eating in rodents, mainly by delaying the onset of meals. The underlying mechanisms of OEA-induced anorexia, however, remain unclear. Animals treated with high OEA doses were shown to display signs of discomfort and impaired locomotion.
View Article and Find Full Text PDFObjective: Intestinal metabolism might play a greater role in regulating whole body metabolism than previously believed. We aimed to enhance enterocyte metabolism in mice and investigate if it plays a role in diet-induced obesity (DIO) and its comorbidities.
Methods: Using the cre-loxP system, we overexpressed the mitochondrial NAD dependent protein deacetylase SIRT3 in enterocytes of mice (iSIRT3 mice).
The small intestine is the main organ involved in the digestion and absorption of nutrients. It is in an ideal position to sense the availability of energy in the lumen in addition to its absorptive function. Consumption of a high-fat diet (HFD) influences the metabolic characteristics of the small intestine.
View Article and Find Full Text PDF