Previous research showed that repetitive sensory stimulation entrains neural oscillations at the stimulation rate, facilitates long-term potentiation like perceptual learning, and improves behavioural performance. For example, short-time repetitive tactile stimulation improved tactile acuity measured with two-point or spatial orientation discrimination tests. The behavioural gain was maximal for a stimulation rate of 20 Hz, the same frequency at which repetitive somatosensory stimulation elicits a steady-state response with maximum amplitude.
View Article and Find Full Text PDFWhen two tones with slightly different frequencies are presented to both ears, they interact in the central auditory system and induce the sensation of a beating sound. At low difference frequencies, we perceive a single sound, which is moving across the head between the left and right ears. The percept changes to loudness fluctuation, roughness, and pitch with increasing beat rate.
View Article and Find Full Text PDFShort-time passive tactile stimulation at 20 Hz improves tactile discrimination acuity. We investigated whether sustained 20 Hz stimulation also modifies cortical responses and whether these changes are plastic as indicated by differences between subsequent recording sessions. Touch stimuli (20 Hz) were applied to the fingertip, and β and γ oscillations at multiples of the stimulus frequency were recorded with magnetoencephalography.
View Article and Find Full Text PDFBackground: Auditory perceptual learning persistently modifies neural networks in the central nervous system. Central auditory processing comprises a hierarchy of sound analysis and integration, which transforms an acoustical signal into a meaningful object for perception. Based on latencies and source locations of auditory evoked responses, we investigated which stage of central processing undergoes neuroplastic changes when gaining auditory experience during passive listening and active perceptual training.
View Article and Find Full Text PDFObjective: Extensive rehabilitation training can lead to functional improvement even years after a stroke. Although neuronal plasticity is considered as a main origin of such ameliorations, specific subtending mechanisms need further investigation. Our aim was to obtain objective neuromagnetic measures sensitive to brain reorganizations induced by a music-supported training.
View Article and Find Full Text PDFClin Neurophysiol
August 2013
Objective: In non-invasive somatotopic mapping based on neuromagnetic source analysis, the recording time can be shortened and accuracy improved by applying simultaneously vibrotactile stimuli at different frequencies to multiple body sites and recording multiple steady-state responses. This study compared the reliability of sensory evoked responses, source localization performance, and reproducibility of digit maps for three different stimulation paradigms.
Methods: Vibrotactile stimuli were applied to the fingertip and neuromagnetic steady-state responses were recorded.
The sensory evoked neuromagnetic response consists of superimposition of an immediately stimulus-driven component and induced changes in the autonomous brain activity, each having distinct functional relevance. Commonly, the strength of phase locking in neural activities has been used to differentiate the different responses. The steady-state response is a strong oscillatory neural activity, which is evoked with rhythmic stimulation, and provides an effective tool to investigate oscillatory brain networks.
View Article and Find Full Text PDFPrecise timing of sound is crucial in music for both performing and listening. Indeed, listening to rhythmic sound sequences activates not only the auditory system but also the sensorimotor system. Previously, we showed the significance of neural beta-band oscillations (15-30 Hz) for the timing processing that involves such auditory-motor coordination.
View Article and Find Full Text PDFThe body surface is represented in somatotopically organized maps in the primary somatosensory cortex. Estimating the size of the hand area with neuromagnetic source analysis has been used as a metric for monitoring neuroplastic changes related to training, learning, and brain injury. Commonly, results were significant as group statistics only because source localization accuracy was limited by factors such as residual noise and head motion.
View Article and Find Full Text PDFJ Clin Neurophysiol
April 2011
Magnetoencephalography (MEG) is a neuroimaging modality with high temporal resolution for studying functional brain processes in relatively small neural assemblies on the time scale of <100 milliseconds and with synchrony and coherence in the recorded signals at high frequencies. Advanced MEG signal analysis gained importance for clinical applications, e.g.
View Article and Find Full Text PDF