The green concretes industry benefits from utilizing gel to replace parts of the cement in concretes. However, measuring the compressive strength of geo-polymer concretes (CSGPoC) needs a significant amount of work and expenditure. Therefore, the best idea is predicting CSGPoC with a high level of accuracy.
View Article and Find Full Text PDFThe investigation compares the conventional, advanced machine, deep, and hybrid learning models to introduce an optimum computational model to assess the ground vibrations during blasting in mining projects. The long short-term memory (LSTM), artificial neural network (ANN), least square support vector machine (LSSVM), ensemble tree (ET), decision tree (DT), Gaussian process regression (GPR), support vector machine (SVM), and multilinear regression (MLR) models are employed using 162 data points. For the first time, the blackhole-optimized LSTM model has been used to predict the ground vibrations during blasting.
View Article and Find Full Text PDFGround vibration due to blasting is identified as a challenging issue in mining and civil activities. Peak particle velocity (PPV) is one of the blasting undesirable consequences, which is resulted during emission of vibration in blasted bench. This study focuses on the PPV prediction in the surface mines.
View Article and Find Full Text PDF