The hierarchical chromatin organization begins with formation of nucleosomes, which fold into chromatin domains punctuated by boundaries and ultimately chromosomes. In a hierarchal organization, lower levels shape higher levels. However, the dependence of higher-order 3D chromatin organization on the nucleosome-level organization has not been studied in cells.
View Article and Find Full Text PDFChromatin attains its three-dimensional (3D) conformation by establishing contacts between different noncontiguous regions. Sterile Alpha Motif (SAM)-mediated polymerization of the polyhomeotic (PH) protein regulates subnuclear clustering of Polycomb Repressive Complex 1 (PRC1) and chromatin topology. The mutations that perturb the ability of the PH to polymerize, disrupt long-range chromatin contacts, alter Hox gene expression, and lead to developmental defects.
View Article and Find Full Text PDFMetazoan genomes have a hierarchal 3-dimensional (3D) organization scaling from nucleosomes, loops, topologically associating domains (TADs), compartments, to chromosome territories. The 3D organization of genome has been linked with development, differentiation and disease. However, the principles governing the 3D chromatin architecture are just beginning to get unraveled.
View Article and Find Full Text PDF