Publications by authors named "Shafqat Karim"

TiO nanotube flow-through membranes (TNTsM) were fabricated anodization of Ti foil and explored as a biosensing platform for creatinine detection. The electrodes were prepared in different configurations including TNT membrane with top surface up (TNTsMTU/TNPs/FTO), TNT membrane with bottom surface up (TNTsMBU/TNPs/FTO), TNT membrane with top surface up containing nanograss (TNTsMNG/TNPs/FTO), and TNTs/NPs/FTO and TiO nanoparticles (TNPs) film on fluorine doped tin oxide (TNPs/FTO). Electrochemical studies depict the higher electrochemical activity (sensitivity ∼19.

View Article and Find Full Text PDF

In this study, a CuInS/CuO/TiO nanotube (TNT) heterojunction-based hybrid material is reported for the selective detection of cholesterol and ibuprofen. Anodic TNTs were co-decorated with CuO and CuInS quantum dots (QDs) using a modified chemical bath deposition (CBD) method. QDs help trigger the chemical oxidation of cholesterol by cathodically generating hydroxyl radicals (˙OH).

View Article and Find Full Text PDF

Transition metal oxides based anodes are facing crucial problems of capacity fading at long cycles and high rates due to electrode degradations. In this prospective, an effective strategy is employed to develop advanced electrode materials for lithium-ion batteries (LIBs). In the present work, a mesoporous CoO@CdS hybrid sructure is developed and investigated as anode for LiBs.

View Article and Find Full Text PDF

Bi-functional materials provide an opportunity for the development of high-performance devices. Up till now, bi-functional performance of NiCoO@SnSnanosheets is rarely investigated. In this work, NiCoO@SnSnanosheets were synthesized on carbon cloth by utilizing a simple hydrothermal technique.

View Article and Find Full Text PDF

This study aimed to synthesize folate-conjugated sorafenib-loaded (FCSL) liposomes for theranostic application using ultrasound (US). US parameter optimization, release, anticancer effect, biodistribution, optical imaging and biocompatibility of liposomes were studied. With 84% release after 4 min of US exposure at 3 MHz (1.

View Article and Find Full Text PDF

The detection of cholesterol is very crucial in clinical diagnosis for rapid and accurate monitoring of multiple disease-biomarkers. There is a great need for construction of a highly reliable and stable electrocatalyst for the efficient detection of cholesterol. In this work, mesoporous NiCoSnanoflakes of enhanced electrochemical properties are prepared through a facile hydrothermal approach.

View Article and Find Full Text PDF

The development of a reliable non-enzymatic multi-analyte biosensor is remained a great challenge for biomedical and industrial applications. In this prospective, rationally designed electrode materials having voltage switchable electrocatalytic properties are highly promising. Here, we report vanadium doped ZnO engineered nanostructures (ZnVO where 0 ≤  ≤ 0.

View Article and Find Full Text PDF

The synthesis of one-dimensional heterostructures having high dielectric constant and low dielectric loss has remained a great challenge. Until now, the dielectric performance of ZnO-ZnS heterostructures was scarcely investigated. In this work, large-scale ZnO-ZnS heterostructures were synthesized by employing the chemical vapor deposition method.

View Article and Find Full Text PDF

The development of a highly sensitive and selective non-enzymatic electrode catalyst for the detection of a target molecule was remained a great challenge. In this regard, bimetallic nanowires (BMNWs) are considered as promising electrode material for their fascinating physical/chemical properties superior to a single system. In this article, nickel cobalt (Ni -Co) BMNWs with tunable stoichiometry were prepared by a template assisted electrodeposition method and their catalytic performance was investigated for the detection of hydrogen peroxide (HO).

View Article and Find Full Text PDF

A thin layer of gold nanoparticles (Au NPs) sputtered on cadmium sulfide quantum dots (CdS QDs) decorated anodic titanium dioxide nanotubes (TNTs) (Au/CdS QDs/TNTs) was fabricated and explored for the nonenzymatic detection of cholesterol and hydrogen peroxide (HO). Morphological studies of the sensor revealed the formation of uniform nanotubes decorated with a homogeneously dispersed CdS QDs and Au NPs layer. The electrochemical measurements showed an enhanced electrocatalytic performance with a fast electron transfer (∼2 s) between the redox centers of each analyte and electrode surface.

View Article and Find Full Text PDF

We report a non-enzymatic facile method for the detection of L-cysteine (L-Cyst) using free-standing TiO nanotube (TNT) array-modified glassy carbon electrodes (GCEs). Self-organized, highly ordered, and vertically oriented TNT arrays were fabricated by anodization of titanium sheets in ethylene glycol-based electrolyte. Detailed electrochemical measurements were performed and it was found that modified GCE exhibited high current compared to the pristine counterpart.

View Article and Find Full Text PDF

We present a comparative study of the toxicity of polyethylene glycol (PEG)-coated cobalt ferrite nanoparticles and nanospheres. Nanoparticles were prepared by hydrothermal method while nanospheres were prepared by solvothermal technique. The surface of nanomaterials was successfully modified with polyethylene glycol.

View Article and Find Full Text PDF

A novel resonant mechanism involving the interference of a broadband plasmon with the narrowband vibration from molecules is presented. With the use of this concept, we demonstrate experimentally the enormous enhancement of the vibrational signals from less than one attomol of molecules on individual gold nanowires, tailored to act as plasmonic nanoantennas in the infrared. By detuning the resonance via a change in the antenna length, a Fano-type behavior of the spectral signal is observed, which is clearly supported by full electrodynamical calculations.

View Article and Find Full Text PDF

Gold and copper nanowires were generated through electrochemical deposition into nanoporous polymeric templates. Depending on the growth conditions, such wires exhibited a distinct textured structure as evidenced by x-ray diffraction. The preferred growth orientation is explained by applying the broken-bond model in combination with surface-energy anisotropy and energy minimization.

View Article and Find Full Text PDF