Calpains are calcium-regulated cysteine proteases that have been implicated in the regulation of cell death pathways. Here, we used our calpain-1 null mouse model to evaluate the function of calpain-1 in neural degeneration following a rodent model of traumatic brain injury. In vivo, calpain-1 null mice show significantly less neural degeneration and apoptosis and a smaller contusion 3 days post-injury than wild type littermates.
View Article and Find Full Text PDFAs mediators of innate immunity, neutrophils respond to chemoattractants by adopting a highly polarized morphology. Efficient chemotaxis requires the formation of one prominent pseudopod at the cell front characterized by actin polymerization, while local inhibition suppresses the formation of rear and lateral protrusions. This asymmetric control of signaling pathways is required for directional migration along a chemotactic gradient.
View Article and Find Full Text PDFHeterochromatin plays an essential role in the preservation of epigenetic information, the transcriptional repression of repetitive DNA elements and inactive genes, and the proper segregation of chromosomes during mitosis. Here we identify KDM2A, a JmjC-domain containing histone demethylase, as a heterochromatin-associated and HP1-interacting protein that promotes HP1 localization to chromatin. We show that KDM2A is required to maintain the heterochromatic state, as determined using a candidate-based approach coupled to an in vivo epigenetic reporter system.
View Article and Find Full Text PDFCalpains are ubiquitous calcium-regulated cysteine proteases that have been implicated in cytoskeletal organization, cell proliferation, apoptosis, cell motility, and hemostasis. Gene targeting was used to evaluate the physiological function of mouse calpain-1 and establish that its inactivation results in reduced platelet aggregation and clot retraction potentially by causing dephosphorylation of platelet proteins. Here, we report that calpain-1 null (Capn1-/-) platelets accumulate protein tyrosine phosphatase 1B (PTP1B), which correlates with enhanced tyrosine phosphatase activity and dephosphorylation of multiple substrates.
View Article and Find Full Text PDFPurpose Of Review: There is considerable interest in understanding the function and mechanism of calpains in platelet aggregation, spreading, and granular secretion pathways. Recent insights from the calpain-1 knockout platelets suggest a pivotal role of these cysteine proteases in the regulation of outside-in signaling, aggregation, and clot retraction.
Recent Findings: The calpain-1 knockout mouse provided direct evidence for the role of calpain-1 in platelet aggregation and clot retraction.