Publications by authors named "Shafeeq-Ur Rahman"

Arsenic (As) pollution seriously threatens human and ecological health. Microalgal cell wall and extracellular polymeric substances (EPS) are known to interact with As, but their roles in the As resistance, accumulation and speciation in microalgae remain unclear. Here, we used two strains of Chlamydomonas reinhardtii, namely CC-125 (wild type) and CC-503 (cell wall-deficient mutant), to examine the algal growth, EPS synthesis, As adsorption, absorption and transformation under 10-1000 µg/L As(III) and As(V) treatments for 96 h.

View Article and Find Full Text PDF

Globally, there is a growing concern about tree mortality due to harsh climates and changes in pest and disease patterns. However, experimental studies on the interactions between biotic and abiotic stresses in plants are relatively scarce. In this study, we investigated the interaction between Fusarium solani and water-stressed Dalbergia sissoo saplings.

View Article and Find Full Text PDF

Heavy metals have been recognized as a prominent hazard in today's world, causing pollution in the air environment. Woody tree species can play a significant role in the extraction and remediation of metal pollutants from the air, therefore promoting the air quality index. This study investigated the potential of four species of the Ficus genus (F.

View Article and Find Full Text PDF

Heavy metal ions pose significant risks to human health, pelagic, and several other life forms due to perniciousness, tendency to accumulate, and resistance to biodegradation. Waste bio-materials extend a budding alternative as low-cost adsorbent to address the removal of noxious pollutants from wastewater on account of being cost-effective and exhibiting exceptional adsorption capacities. The current exploration was accomplished to gauge the performance of raw and modified human hair concerning lead scavenging in a down-flow fixed bed column.

View Article and Find Full Text PDF

Scientific knowledge of cancer has advanced greatly throughout the years, with most recent studies findings includes many hallmarks that capture disease's multifaceted character. One of the novel approach utilised for the delivery of anti-cancer agents includes mesenchymal stem cell mediated drug delivery. Mesenchymal stem cells (MSCs) are non-haematopoietic progenitor cells that may be extracted from bone marrow, tooth pulp, adipose tissue and placenta/umbilical cord blood dealing with adult stem cells.

View Article and Find Full Text PDF

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production.

View Article and Find Full Text PDF

Lead (Pb) is a highly toxic contaminant that is ubiquitously present in the ecosystem and poses severe environmental issues, including hazards to soil-plant systems. This review focuses on the uptake, accumulation, and translocation of Pb metallic ions and their toxicological effects on plant morpho-physiological and biochemical attributes. We highlight that the uptake of Pb metal is controlled by cation exchange capacity, pH, size of soil particles, root nature, and other physio-chemical limitations.

View Article and Find Full Text PDF

Climate change and cadmium (Cd) contamination pose severe threats to rice production and food security. Biochar (BC) has emerged as a promising soil amendment for mitigating these challenges. To investigate the BC effects on paddy soil upon GHG emissions, Cd bioavailability, and its accumulation, a meta-analysis of published data from 2000 to 2023 was performed.

View Article and Find Full Text PDF
Article Synopsis
  • - Nanotechnology can enhance sustainable agriculture by improving nutrient use efficiency, pest management, and reducing negative environmental impacts through the integration of precision agriculture and advanced technologies like nanosensors and nanochips.
  • - Innovative tools such as nanofertilizers, nanopesticides, and nano-based disease detection kits offer precise application and monitoring, allowing for better resource management and early disease detection in crops.
  • - Despite its potential, challenges like safety concerns, effective field implementation, and consumer acceptance need to be addressed, alongside proposed policy options and research pathways to enable practical use of nanotechnology in agriculture.
View Article and Find Full Text PDF

Aluminum (Al), a non-essential metal for plant growth, exerts significant phytotoxic effects, particularly on root growth. Anthropogenic activities would intensify Al's toxic effects by releasing Al into the soil solution, especially in acidic soils with a pH lower than 5.5 and rich mineral content.

View Article and Find Full Text PDF

A migraine is a condition of severe headaches, causing a disturbance in the daily life of the patient. The current studies were designed to develop immediate-release polymeric buccal films of Eletriptan Hydrobromide (EHBR) and Itopride Hydrochloride (ITHC) to improve their bioavailability and, hence, improve compliance with the patients of migraines and its associated symptoms. The prepared films were evaluated for various in vitro parameters, including surface morphology, mechanical strength, disintegration test (DT), total dissolving time (TDT), drug release and drug permeation, etc.

View Article and Find Full Text PDF

Soil microbial activity (SMA) is vital concerning carbon cycling, and its functioning is recognized as the primary factor in modifying soil carbon storage potential. The composition of the microbial community (MC) is significant in sustaining environmental services because the structure and activity of MC also influence nutrient turnover, distribution, and the breakdown rate of soil organic matter. SMA is an essential predictor of soil quality alterations, and microbiome responsiveness is imperative in addressing the escalating sustainability concerns in the Himalayan ecosystem.

View Article and Find Full Text PDF

The environmental issue of lead (Pb), cadmium (Cd), and tetracycline (TC) contamination in cereal crops has become a growing concern worldwide. An in-depth understanding of this issue would be of importance to promote effective management strategies for heavy metals and antibiotics worldwide. The present study was conducted to assess the toxic effects of heavy metals (Cd, Pb) and antibiotics (TC) on Triticum aestivum (T.

View Article and Find Full Text PDF

Salinity is a major threat to the yield and productivity of cotton seedlings. In the present study, we developed a BCF population of cotton plants from (5-7) and (CCRI 12-4) salt-susceptible parents to identify salt-resistant candidate genes. The Illumina HiSeq™ strategy was used with bulked segregant analysis.

View Article and Find Full Text PDF

Soil and air pollution caused by heavy metals and limestone dust are prevalent in urban environments and they are an alarming threat to the environment and humans. This study was designed to investigate the changes in morphological and physiological traits of three urban tree species seedlings (, and ) under the individual as well as synergetic effects of heavy metal lead (Pb) and limestone dust toxicities. The tree species were grown under controlled environmental conditions with nine treatments consisting of three levels of dust (0, 10, and 20 g) and three levels of Pb contaminated water irrigation (0, 5, and 10 mg L).

View Article and Find Full Text PDF

LncRNAs regulate flower color formation in Ipomoea nil via vacuolar pH, TCA cycle, and oxidative phosphorylation pathways. The significance of long noncoding RNA (lncRNA) in diverse biological processes is crucial in plant kingdoms. Although study on lncRNAs has been extensive in mammals and model plants, lncRNAs have not been identified in Ipomoea nil (I.

View Article and Find Full Text PDF

With rapid industrial development, millions of tons of industrial wastewater are produced that contain highly toxic, carcinogenic, mutagenic compounds. These compounds may consist of high concentration of refractory organics with plentiful carbon and nitrogen. To date, a substantial proportion of industrial wastewater is discharged directly to precious water bodies due to the high operational costs associated with selective treatment methods.

View Article and Find Full Text PDF

Shallow groundwater plays a vital role in physiology morphological attributes, water use, and yield production of winter wheat, but little is known of its interaction with nitrogen (N) application. We aimed to explore the effects of N fertilization rate and shallow groundwater table depth (WTD) on winter wheat growth attributes, yield, and water use. Experiments were carried out in micro-lysimeters at WTD of 0.

View Article and Find Full Text PDF

Anthropogenic activities pose a more significant threat to the environment than natural phenomena by contaminating the environment with heavy metals. Cadmium (Cd), a highly poisonous heavy metal, has a protracted biological half-life and threatens food safety. Plant roots absorb Cd due to its high bioavailability through apoplastic and symplastic pathways and translocate it to shoots through the xylem with the help of transporters and then to the edible parts via the phloem.

View Article and Find Full Text PDF

Soil chromium toxicity usually caused by the tannery effluent compromises the environment and causes serious health hazards. The microbial role in strengthening biochar for its soil chromium immobilization remains largely unknown. Hence, this study evaluated the effectiveness of zinc and iron-enriched rice husk biochar (ZnBC and FeBC) with microbial combinations to facilitate the chromium immobilization in sandy loam soil.

View Article and Find Full Text PDF

Environmental pollution of heavy metals (HMs), mainly due to anthropogenic activities, has received growing attention in recent decades. HMs, especially the non-essential carcinogenic ones, including chromium (Cr), cadmium (Cd), mercury (Hg), aluminum (Al), lead (Pb), and arsenic (As), have appeared as the most significant air, water, and soil pollutants, which adversely affect the quantity, quality, and security of plant-based food all over the world. Plants exposed to HMs could experience significant decline in growth and yield.

View Article and Find Full Text PDF

Trace elements (TEs) from various natural and anthropogenic activities contaminate the agricultural water and soil environments. The use of nanoparticles (NPs) as nano-fertilizers or nano-pesticides is gaining popularity worldwide. The NPs-mediated fertilizers encourage the balanced availability of essential nutrients to plants compared to traditional fertilizers, especially in the presence of excessive amounts of TEs.

View Article and Find Full Text PDF

Environmental pollution induced by heavy metals has been identified as a leading threat in the modern era. Woody tree species may play a crucial role in the removal of heavy metals from soil and air, thus minimizing pollution potential. The present study was designed to evaluate the phytoremediation potential of six tree species; Azadirachta indica, Cassia fistula, Conocarpus erectus, Eucalyptus camaldulensis, Morus alba, and Populus deltoids, respectively, in the industrial and residential areas of Faisalabad based on the concentrations of lead (Pb), zinc (Zn), cadmium (Cd), and copper (Cu) in their leaves and barks in winter (2018) and summer (2019) seasons.

View Article and Find Full Text PDF