Pathological brain lesions exhibit diverse appearance in brain images, in terms of intensity, texture, shape, size, and location. Comprehensive sets of data and annotations are difficult to acquire. Therefore, unsupervised anomaly detection approaches have been proposed using only normal data for training, with the aim of detecting outlier anomalous voxels at test time.
View Article and Find Full Text PDFMorphometric brain changes occur throughout the lifetime and are often investigated to understand healthy ageing and disease, to identify novel biomarkers, and to classify patient groups. Yet, to accurately characterise such changes, an accurate parcellation of the brain must be achieved. Here, we present a manually-parcellated dataset of the superior frontal, the supramarginal, and the cingulate gyri of 10 healthy middle-aged subjects along with a fully detailed protocol based on two anatomical atlases.
View Article and Find Full Text PDFBackground: Cortical parcellation is an essential neuroimaging tool for identifying and characterizing morphometric and connectivity brain changes occurring with age and disease. A variety of software packages have been developed for parcellating the brain's cortical surface into a variable number of regions but interpackage differences can undermine reproducibility. Using a ground truth dataset (Edinburgh_NIH10), we investigated such differences for grey matter thickness (GM), grey matter volume (GM) and white matter surface area (WM) for the superior frontal gyrus (SFG), supramarginal gyrus (SMG), and cingulate gyrus (CG) from 4 parcellation protocols as implemented in the FreeSurfer, BrainSuite, and BrainGyrusMapping (BGM) software packages.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
August 2018
A high replicability in region-of-interest (ROI) morphometric or ROI-based connectivity analyses is essential for such methods to provide biomarkers of good health or disease. In this article, we focus on package design, and more specifically on cortical parcellation protocols, for novel insight into their contribution to inter-package differences. A critical analysis of cortical parcellation protocols from FreeSurfer, BrainSuite, BrainVISA and BrainGyrusMapping revealed major limitations.
View Article and Find Full Text PDFDifferentiation of cerebral tumor pathology currently relies on interpretation of conventional structural MRI and in some cases histology. However, more advanced MRI methods may provide further insight into the organization of cerebral tumors and have the potential to aid diagnosis. The objective of this study was to use multimodal quantitative MRI to measure the imaging signatures of meningioma and low-grade glioma (LGG).
View Article and Find Full Text PDFPermutation testing has been widely implemented in voxel-based morphometry (VBM) tools. However, this type of non-parametric inference has yet to be thoroughly compared with traditional parametric inference in VBM studies of brain structure. Here we compare both types of inference and investigate what influence the number of permutations in permutation testing has on results in an exemplar study of how gray matter proportion changes with age in a group of working age adults.
View Article and Find Full Text PDF