The mechanical properties of solid tumors influence tumor cell phenotype and the ability to invade surrounding tissues. Using bioengineered scaffolds to provide a matrix microenvironment for patient-derived glioblastoma (GBM) spheroids, this study demonstrates that a soft, brain-like matrix induces GBM cells to shift to a glycolysis-weighted metabolic state, which supports invasive behavior. We first show that orthotopic murine GBM tumors are stiffer than peritumoral brain tissues, but tumor stiffness is heterogeneous where tumor edges are softer than the tumor core.
View Article and Find Full Text PDFThrough rational design, block sequence controlled triblock copolypeptides comprising cysteine and tyrosine as well as a lysine or glutamic acid central block are devised. In these copolypeptides, each block contributes a specific property to the hydrogels to render them extrusion printable and antimicrobial. Three-dimensional (3D) printing of complex hydrogel structures with high shape retention is demonstrated.
View Article and Find Full Text PDFWe design hybrid antibiotic peptide conjugates that can permeate membranes. Integration of multiple components with different functions into a single molecule is often problematic, due to competing chemical requirements for different functions and to mutual interference. By examining the structure of antimicrobial peptides (AMPs), we show that it is possible to design and synthesize membrane active antibiotic peptide conjugates (MAAPCs) that synergistically combine multiple forms of antimicrobial activity, resulting in unusually strong activity against persistent bacterial strains.
View Article and Find Full Text PDF