Publications by authors named "Shadi Keihankhadiv"

In the present study, single-walled carbon nanotubes (SWCNTs) incorporating chitosan-graft-gelatin (CS-g-GEL/SWCNTs) hydrogels were fabricated with multiple advantages, including cost-effectiveness, high efficiency, biodegradability, and ease of separation for methylene blue (MB) dye from aqueous solution. To verify the successful formulation of the prepared hydrogels, various characterization methods such as NMR, FTIR, XRD, FE-SEM, TGA, BET, and EDX were employed. The removal efficiency of CS-g-GEL/SWCNTs nanocomposite hydrogel increased significantly to 98.

View Article and Find Full Text PDF

Single and dual bioactive linear poly(ionic liquid)s (PIL) were synthesized for use as nanocarriers in drug delivery systems (DDS). These PILs were obtained through the (co)polymerization of the choline-based monomeric ionic liquids (MIL) with pharmaceutical anions possessing antibacterial properties, specifically [2-(methacryloyloxy)ethyl]trimethyl-ammonium with ampicillin and p-aminosalicylate (TMAMA/AMP and TMAMA/PAS). The copolymers exhibited varying chain lengths defined by a degree of polymerization (DP = 122-370), and differing contents of ionic fraction and drugs (TMAMA 61-92 %, AMP 61-93 % and PAS 16-21 %).

View Article and Find Full Text PDF

Previously reported amphiphilic linear and graft copolymers, derived from the ionic liquid [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA_Cl‾), along with their conjugates obtained through modification either before or after polymerization with -aminosalicylate anions (TMAMA_PAS‾), were employed as matrices in drug delivery systems (DDSs). Based on the counterion type in TMAMA units, they were categorized into single drug systems, manifesting as ionic polymers with chloride counterions and loaded isoniazid (ISO), and dual drug systems, featuring ISO loaded in self-assembled PAS conjugates. The amphiphilic nature of these copolymers was substantiated through the determination of the critical micelle concentration (CMC), revealing an increase in values post-ion exchange (from 0.

View Article and Find Full Text PDF

Hydrocortisone, a commonly used anti-inflammatory drug, has limited aqueous solubility and several side effects. To address this challenge, as a proof-of-concept, this article demonstrates the development of a controlled-release drug delivery system (DDS) for hydrocortisone using chitosan-grafted poly(-vinylcaprolactam) (CS--PNVCL)-coated core-shell FeO@SiO nanoformulations (NFs). Reported magnetic nanoparticles (NPs) were synthesized and modified with silica, PNVCL, and CS precursors to enhance the biocompatibility of DDS and drug-loading efficiency.

View Article and Find Full Text PDF

Bioactive linear choline-based copolymers were developed as micellar carriers for drug delivery systems (DDSs). The polymethacrylates containing trimethylammonium groups with -aminosalicylate anions (PAS-based copolymers: series 1) or chloride anions (Cl-based copolymers: series 2) differing in ionic content and chain length were selected for drug loading. The diverse structures of amphiphilic copolymers made it possible to adjust the encapsulation efficiency of a well-known antibiotic, i.

View Article and Find Full Text PDF

Regenerative medicine confronts various obstacles, such as creating and advancing biomaterials. Besides being safe, such materials should promote cellular activity. Polycaprolactone (PCL) has numerous medical applications as an engineering material.

View Article and Find Full Text PDF

A pH-sensitive bilayer electrospun nanofibrous mat containing both antibiotic (gentamicin sulfate, GEN) and non-steroidal anti-inflammatory (diclofenac sodium, DIC) drugs was fabricated for burn wound dressing by electrospinning technique, in which ethyl cellulose (EC) and ethyl cellulose/Eudragit S-100 (EC/ES-100) formed the top and bottom layers, respectively. The fabricated pH-sensitive bilayer electrospun nanofibrous mats were characterized from aspects of both structure and efficiency. Physicochemical properties were investigated via SEM, FTIR, and TGA.

View Article and Find Full Text PDF

Bioactive linear poly(ionic liquid)s (PIL) were designed as carriers in drug delivery systems (DDS). Their synthesis was based on a monomeric ionic liquid (MIL) with a relevant pharmaceutical anion to create therapeutically functionalized monomers, which further can be used in the controlled atom transfer radical polymerization (ATRP). The presence of chloride counterions in the quaternary ammonium groups of choline MIL, e.

View Article and Find Full Text PDF

The main goal of the present project was to design and develop ibuprofen (IBU) and layered double hydroxides-vancomycin (LDH-VAN) nanohybrid loaded bionanocomposite fibrous mats to increase the wound healing rate. Thus, first, LDH-VAN nanohybrid particles was synthesized by in-situ incorporation of VAN into the Mg-Al-LDH interlayers during the co-precipitation of hydroxides. Then, LDH-VAN/IBU/CMC-PEO bionanocomposite fibrous mats were fabricated by electrospinning technique.

View Article and Find Full Text PDF