Publications by authors named "Shadi Basurra"

Detecting faulty pipelines in water management systems is crucial for ensuring a reliable supply of clean water. Traditional inspection methods are often time-consuming, costly, and prone to errors. This study introduces an AI-based model utilizing images to detect pipeline defects, focusing on leaks, cracks, and corrosion.

View Article and Find Full Text PDF

The growing problem of unsolicited text messages (smishing) and data irregularities necessitates stronger spam detection solutions. This paper explores the development of a sophisticated model designed to identify smishing messages by understanding the complex relationships among words, images, and context-specific factors, areas that remain underexplored in existing research. To address this, we merge a UCI spam dataset of regular text messages with real-world spam data, leveraging OCR technology for comprehensive analysis.

View Article and Find Full Text PDF

Metastatic breast cancer (MBC) continues to be a leading cause of cancer-related deaths among women. This work introduces an innovative non-invasive breast cancer classification model designed to improve the identification of cancer metastases. While this study marks the initial exploration into predicting MBC, additional investigations are essential to validate the occurrence of MBC.

View Article and Find Full Text PDF

The sneaker industry is continuing to expand at a fast rate and will be worth over USD 120 billion in the next few years. This is, in part due to social media and online retailers building hype around releases of limited-edition sneakers, which are usually collaborations between well-known global icons and footwear companies. These limited-edition sneakers are typically released in low quantities using an online raffle system, meaning only a few people can get their hands on them.

View Article and Find Full Text PDF

With current and predicted economic pressures within English Children's Services in the UK, there is a growing discourse around the development of methods of analysis using existing data to make more effective interventions and policy decisions. Agent-Based modelling shows promise in aiding in this, with limitations that require novel methods to overcome. This can include challenges in managing model complexity, transparency, and validation; which may deter analysts from implementing such Agent-Based simulations.

View Article and Find Full Text PDF

This article introduces a prototype laser communication system integrated with uncrewed aerial vehicles (UAVs), aimed at enhancing data connectivity in remote healthcare applications. Traditional radio frequency systems are limited by their range and reliability, particularly in challenging environments. By leveraging UAVs as relay points, the proposed system seeks to address these limitations, offering a novel solution for real-time, high-speed data transmission.

View Article and Find Full Text PDF

Cardiovascular diseases present a significant global health challenge that emphasizes the critical need for developing accurate and more effective detection methods. Several studies have contributed valuable insights in this field, but it is still necessary to advance the predictive models and address the gaps in the existing detection approaches. For instance, some of the previous studies have not considered the challenge of imbalanced datasets, which can lead to biased predictions, especially when the datasets include minority classes.

View Article and Find Full Text PDF

Floorplan energy assessments present a highly efficient method for evaluating the energy efficiency of residential properties without requiring physical presence. By employing computer modelling, an accurate determination of the building's heat loss or gain can be achieved, enabling planners and homeowners to devise energy-efficient renovation or redevelopment plans. However, the creation of an AI model for floorplan element detection necessitates the manual annotation of a substantial collection of floorplans, which poses a daunting task.

View Article and Find Full Text PDF

Cancer has received extensive recognition for its high mortality rate, with metastatic cancer being the top cause of cancer-related deaths. Metastatic cancer involves the spread of the primary tumor to other body organs. As much as the early detection of cancer is essential, the timely detection of metastasis, the identification of biomarkers, and treatment choice are valuable for improving the quality of life for metastatic cancer patients.

View Article and Find Full Text PDF

Diagnosing diabetes early is critical as it helps patients live with the disease in a healthy way - through healthy eating, taking appropriate medical doses, and making patients more vigilant in their movements/activities to avoid wounds that are difficult to heal for diabetic patients. Data mining techniques are typically used to detect diabetes with high confidence to avoid misdiagnoses with other chronic diseases whose symptoms are similar to diabetes. Hidden Naïve Bayes is one of the algorithms for classification, which works under a data-mining model based on the assumption of conditional independence of the traditional Naïve Bayes.

View Article and Find Full Text PDF

The concept of molecular similarity has been commonly used in rational drug design, where structurally similar molecules are examined in molecular databases to retrieve functionally similar molecules. The most used conventional similarity methods used two-dimensional (2D) fingerprints to evaluate the similarity of molecules towards a target query. However, these descriptors include redundant and irrelevant features that might impact the performance of similarity searching methods.

View Article and Find Full Text PDF