Publications by authors named "Shaddock D"

Low power optical phase tracking is an enabling capability for intersatellite laser interferometry, as minimum trackable power places significant constraints on mission design. Through the combination of laser stabilization and control-loop parameter optimization, we have demonstrated continuous tracking of a subfemtowatt optical field with a mean time between slips of more than 1000 s. Comparison with analytical models and numerical simulations verified that the observed experimental performance was limited by photon shot noise and unsuppressed laser frequency fluctuations.

View Article and Find Full Text PDF

We found a calculation error affecting the scaling of results presented in Figure 7 of our article "Absolute frequency readout derived from ULE cavity for next generation geodesy missions" [Opt. Express2926014 (2021)10.1364/OE.

View Article and Find Full Text PDF

We present a free-space optical displacement sensor for measuring geological slip event displacements within a laboratory setting. This sensor utilizes a fiberized Mach-Zehnder based optical heterodyne system coupled with a digital phase lock loop, providing a large dynamic range (multiple centimeters), high displacement resolution (with an amplitude spectral density of <10 m/Hz for frequencies above 100 Hz), and high velocity tracking capabilities (up to 4.96 m/s).

View Article and Find Full Text PDF

We demonstrate digitally enhanced interferometry with better than 100 dB mean cross-talk suppression with Golay complementary pairs using a combination of numerical simulations and experiments. These results exceed previously reported cross-talk suppression using conventional maximal length sequences by more than 48 dB.

View Article and Find Full Text PDF

The next generation of Gravity Recovery and Climate Experiment (GRACE)-like dual-satellite geodesy missions proposals will rely on inter-spacecraft laser interferometry as the primary instrument to recover geodesy signals. Laser frequency stability is one of the main limits of this measurement and is important at two distinct timescales: short timescales over 10-1000 seconds to measure the local gravity below the satellites, and at the month to year timescales, where the subsequent gravity measurements are compared to indicate loss or gain of mass (or water and ice) over that period. This paper demonstrates a simple phase modulation scheme to directly measure laser frequency change over long timescales by comparing an on-board Ultra-Stable Oscillator (USO) clocked frequency reference to the Free Spectral Range (FSR) of the on-board optical cavity.

View Article and Find Full Text PDF

This paper describes, to our knowledge, the first demonstration of high performance tilt locking, a method of stabilizing laser frequency to an optical reference cavity using a spatial-mode readout technique. The experiment utilized a traveling wave cavity with a finesse of approximately 10,000, housed in a thermally controlled vacuum chamber. The tilt locking method in a double pass configuration has promising performance in the 100 µHz-1 Hz band, including surpassing the Gravity Recovery and Climate Experiment (GRACE) Follow-On laser ranging interferometer requirement.

View Article and Find Full Text PDF

We present a detailed analysis of techniques to mitigate the effects of phase noise and Doppler-induced frequency offsets in coherent random amplitude modulated continuous-wave (RAMCW) LiDAR. The analysis focuses specifically on a technique which uses coherent dual-quadrature detection to enable a sum of squares calculation to remove the input signal's dependence on carrier phase and frequency. This increases the correlation bandwidth of the matched-template filter to the bandwidth of the acquisition system, whilst also supporting the simultaneous measurement of relative radial velocity with unambiguous direction-of-travel.

View Article and Find Full Text PDF

We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star-black hole, and binary black hole systems.

View Article and Find Full Text PDF
Article Synopsis
  • On May 21, 2019, Advanced LIGO and Virgo detected a significant gravitational-wave signal known as GW190521, indicating a high probability event with a low chance of false alarms.
  • The signal suggests it resulted from the merger of two black holes, one around 85 solar masses and the other about 66 solar masses, with the primary black hole likely being an intermediate mass black hole.
  • The source of the merger is estimated to be about 5.3 billion light-years away, and the rate of similar black hole mergers is estimated to be about 0.13 mergers per billion cubic parsecs per year.
View Article and Find Full Text PDF

Optical phased arrays (OPAs) are devices that use the coherence of light to control the interference pattern in the far field, which enables them to steer a laser beam with no moving parts. As such, OPAs have potential applications in laser communications, target acquisition and tracking, metrology, and directed energy. In this Letter, we present a control architecture for an actively phase-locked OPA, capable of steering a laser beam at speeds limited by the actuation bandwidth of electro-optic modulators.

View Article and Find Full Text PDF

Digitally enhanced heterodyne interferometry (DEHI) combines the sub-wavelength displacement measurements of conventional laser interferometry with the multiplexing capabilities of spread-spectrum modulation techniques to discriminate between multiple electric fields at a single photodetector. Technologies that benefit from DEHI include optical phased arrays, which require the simultaneous phase measurement of a large number of electric fields. A consequence of measuring the phase of multiple electric fields is the introduction of crosstalk, which can degrade measurement precision.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the existence of subsolar mass ultracompact objects by analyzing data from Advanced LIGO's second observing run and includes the impact of spin on gravitational waves.
  • No suitable gravitational-wave candidates were found for binaries with at least one component between 0.2 and 1.0 solar masses, leading to significant constraints on their binary merger rates.
  • The findings suggest that such ultracompact objects likely do not form through conventional stellar evolution, and they outline how these constraints on merger rates can be applied to different black hole population models that predict subsolar mass binaries.
View Article and Find Full Text PDF

We demonstrate phase control for vacuum-squeezed light at a 2 μm wavelength, which is a necessary technology for proposed future gravitational wave observatories. The control scheme allowed examination of noise behavior at frequencies below 1 kHz and indicated that squeezing below this frequency was limited by dark noise and scattered light. We directly measure 3.

View Article and Find Full Text PDF

The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degrees of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wave front sensing compensates spacecraft attitude fluctuations.

View Article and Find Full Text PDF

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime.

View Article and Find Full Text PDF

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index.

View Article and Find Full Text PDF

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2  M_{⊙}-1.0  M_{⊙} using data taken between September 12, 2015 and January 19, 2016.

View Article and Find Full Text PDF

On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii.

View Article and Find Full Text PDF

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources.

View Article and Find Full Text PDF

We present the generation and detection of squeezed light in the 2  μm wavelength region. This experiment is a crucial step in realizing the quantum noise reduction techniques that will be required for future generations of gravitational-wave detectors. Squeezed vacuum is generated via degenerate optical parametric oscillation from a periodically poled potassium titanyl phosphate crystal, in a dual resonant cavity.

View Article and Find Full Text PDF

We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy.

View Article and Find Full Text PDF

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations.

View Article and Find Full Text PDF
Article Synopsis
  • * The analysis focused on detecting continuous signals from pulsars and did not depend on any specific gravity theory.
  • * After examining data from advanced LIGO, we found no signs of these gravitational waves, but established upper limits for scalar and vector strains that are similar to existing limits for tensor strain.
View Article and Find Full Text PDF

This paper presents an analysis of the transient behavior of the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) suspensions used to seismically isolate the optics. We have characterized the transients in the longitudinal motion of the quadruple suspensions during Advanced LIGO's first observing run. Propagation of transients between stages is consistent with modeled transfer functions, such that transient motion originating at the top of the suspension chain is significantly reduced in amplitude at the test mass.

View Article and Find Full Text PDF

Precise optical control of microscopic particles has been mastered over the past three decades, with atoms, molecules and nano-particles now routinely trapped and cooled with extraordinary precision, enabling rapid progress in the study of quantum phenomena. Achieving the same level of control over macroscopic objects is expected to bring further advances in precision measurement, quantum information processing and fundamental tests of quantum mechanics. However, cavity optomechanical systems dominated by radiation pressure - so-called 'optical springs' - are inherently unstable due to the delayed dynamical response of the cavity.

View Article and Find Full Text PDF