Publications by authors named "Shadbolt S"

Stone formation in the urinary tract is a multifactorial world-wide disease afflicting between 8 and 20% of population groups in different geographical locations. Discrimination between stone formers and healthy persons on the basis of urine composition remains a crucial goal among researchers. Since H NMR is able to monitor the metabolic function of the kidney we applied it to the urine of 60 stone formers (34 females, 26 males) and 38 healthy persons (14 females, 24 males).

View Article and Find Full Text PDF

We describe a new method, which identifies protein fragments for soluble expression in Escherichia coli from a randomly fragmented gene library. Inhibition of E. coli dihydrofolate reductase (DHFR) by trimethoprim (TMP) prevents growth, but this can be relieved by murine DHFR (mDHFR).

View Article and Find Full Text PDF

We have created a high quality phage display library containing over 1010 human antibodies and describe its use in the generation of antibodies on an unprecedented scale. We have selected, screened and sequenced over 38,000 recombinant antibodies to 292 antigens, yielding over 7,200 unique clones. 4,400 antibodies were characterized by specificity testing and detailed sequence analysis and the data/clones are available online.

View Article and Find Full Text PDF

Background: A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit.

View Article and Find Full Text PDF

Background: In the search for generic expression strategies for mammalian protein families several bacterial expression vectors were examined for their ability to promote high yields of soluble protein. Proteins studied included cell surface receptors (Ephrins and Eph receptors, CD44), kinases (EGFR-cytoplasmic domain, CDK2 and 4), proteases (MMP1, CASP2), signal transduction proteins (GRB2, RAF1, HRAS) and transcription factors (GATA2, Fli1, Trp53, Mdm2, JUN, FOS, MAD, MAX). Over 400 experiments were performed where expression of 30 full-length proteins and protein domains were evaluated with 6 different N-terminal and 8 C-terminal fusion partners.

View Article and Find Full Text PDF