Stress facilitates development of addictive behaviors in part by stress-induced increase in the strength of glutamatergic synapses at dopamine (DA) neurons within the ventral tegmental area (VTA). Here, we further demonstrate that this stress-induced synaptic adaptation is glucocorticoid-dependent and is progressively developed. Activation of glucocorticoid receptors (GRs) either by in vivo injection of dexamethasone (Dex) or incubation of the VTA slice with Dex potentiate the synaptic strength of glutamatergic synapses at VTA DA neurons, whereas preventing the activation of GRs by Ru486 abolishes this effect.
View Article and Find Full Text PDFExp Biol Med (Maywood)
May 2005
Given the close relationship among neuroendocrine systems, it is likely that there may be common signals that coordinate the acquisition of adult reproductive function with other homeostatic processes. In this review, we focus on central nervous system insulin-like growth factor-1 (IGF-1) as a signal controlling reproductive function, with possible links to somatic growth, particularly during puberty. In vertebrates, the appropriate neurosecretion of the decapeptide gonadotropin-releasing hormone (GnRH) plays a critical role in the progression of puberty.
View Article and Find Full Text PDFReproductive development in vertebrates is controlled by changes in hypothalamic GnRH neurons and their inputs from other neurons and glia. One factor involved in the regulation of the GnRH system is the neurotrophic factor, IGF-1. To better understand the regulation of GnRH neurons by hypothalamic IGF-1, we quantified levels of IGF-1 mRNA in hypothalamic and preoptic regions containing GnRH cells, studied the effects of IGF-1 on GnRH gene expression, and examined the neuroanatomical relationship between GnRH neurons and hypothalamic IGF-1 in neonatal, peripubertal, and reproductively mature mice.
View Article and Find Full Text PDF