Publications by authors named "Shabi Abbas Zaidi"

A 3D-printable polymer can provide an effective solution for developing piezoelectric structures. However, their nanocomposite formulation and 3D printing processability must be optimized for fabricating complex geometries with high printability. In the present study, we optimized the 3D-printable piezoelectric composite formulation for developing complex geometries by an additive manufacturing approach.

View Article and Find Full Text PDF

Molecularly imprinted polymer (MIP)-based electrochemical sensors have been extensively researched due to their higher sensitivity, quick response, and operational ease. To develop more advanced sensing devices with enhanced properties, MIPs have been integrated with two-dimensional (2D) layered materials such as transition metal dichalcogenides (TMDs) and MXenes. These 2D materials have unique electronic properties and an extended surface area, making them promising sensing materials that can improve the performance of MIPs.

View Article and Find Full Text PDF

In this work, a simple and facile method was developed to achieve controlled oxidation and enhance the surface area of MXene nanosheets and their utilization in the efficient sensing of ascorbic acid (AA or vitamin C). After etching of MAX phase to MXene via the MILD technique, controlled flash oxidation was carried out in the open air environment for 1.5 h, followed by flocculation of oxidized MXene nanosheets by using HSO, consequently achieving crumpled MXene possessing anatase phase, porosity, and improved surface area as revealed and confirmed by SEM, TEM, Raman, and BET analysis results.

View Article and Find Full Text PDF
Article Synopsis
  • Identifying the target molecule is crucial for quick and accurate clinical diagnoses.
  • It plays a key role in effective disease monitoring.
  • Understanding these molecules enhances overall healthcare outcomes.
View Article and Find Full Text PDF
Article Synopsis
  • Urbanization and population growth have led to a dramatic increase in solid waste generation, projected to reach 3.40 billion tons by 2050, making waste reusability increasingly important.
  • Carbon-based quantum dots (Cb-QDs), synthesized from solid wastes, are emerging as versatile semiconductors with applications in energy storage, chemical sensing, and drug delivery.
  • The review focuses on sustainable synthesis methods for carbon quantum dots and their variants, discusses their applications, and highlights challenges and future research directions in waste management and pollution reduction.
View Article and Find Full Text PDF

Over the last decades, molecularly imprinted polymers (MIPs) have emerged as selective synthetic receptors that have a selective binding site for specific analytes/target molecules. MIPs are synthetic analogues to the natural biological antigen-antibody system. Owing to the advantages they exhibit, such as high stability, simple synthetic procedure, and cost-effectiveness, MIPs have been widely used as receptors/sensors for the detection and monitoring of a variety of analytes.

View Article and Find Full Text PDF

Despite their high analytical performance, conventional analytical biosensor devices are usually difficult to handle, time-consuming, bulky and expensive. As a result, their applications remain restricted to resource-limited environments. In particular, the transportation of conventional analytical equipment is challenging for the proper in-situ point of need (PON)/point of care (POC) detection of biomolecules.

View Article and Find Full Text PDF

The molecular imprinting polymers (MIPs) have shown their potential in various applications including pharmaceuticals, chemical sensing and biosensing, medical diagnosis, and environmental related issues, owing to their artificial selective biomimetic recognition ability. Despite the challenges posed in the imprinting and recognition of biomacromolecules, the use of MIP for the imprinting of large biomolecular oragnism such as viruses is of huge interest because of the necessity of early diagnosis of virus-induced diseases for clinical and point-of-care (POC) purposes. Thus, many fascinating works have been documented in which such synthetic systems undoubtedly explore a variety of potential implementations, from virus elimination, purification, and diagnosis to virus and bacteria-borne disease therapy.

View Article and Find Full Text PDF

MXene, a novel class of 2-dimensional transition metal carbides has evolved as a promising material for various applications owing to its outstanding characteristics such as hydrophilicity, high electrical conductivity, surface area, and attractive topological structure. MXenes can form dispersion in common solvents and constitute composite with other nanomaterials, which can be utilized as effective transducers for molecular sensing. MXene-modified support materials, thus provide an intriguing platform for immobilization of target molecules onto their surface.

View Article and Find Full Text PDF

Microbial contaminations and infections are hazardous and pose crucial concerns for humans. They result in severe morbidity and mortality around the globe. Even though dish-culturing, polymerase chain reaction (PCR), an enzyme-linked immunosorbent assay (ELISA) exhibits accurate and reliable detection of bacteria but these methods are time-consuming, laborious, and expensive.

View Article and Find Full Text PDF

Cancer is the one of the fatal and dreaded disease responsible for huge number of morbidity and mortality across the globe. It is expected that the global burden will increase to 21.7 million fresh cancer cases as compared to present estimate of 18.

View Article and Find Full Text PDF

Herein, we propose a facile chemical reduction method to synthesize the molybdenum carbide (MoC) nanoparticles and its application for the electrochemical detection of folic acid (FA) through imprinting technique. Raman scattering, photoelectron spectroscopy and electron microscopy techniques were employed to study the properties of MoC nanoparticles. FA imprinting was carried out in the presence of pyrrole monomer over MoC modified glassy carbon electrode (GCE).

View Article and Find Full Text PDF

Apart from being a vital catecholamine molecule responsible for the proper functioning of the central nervous system (CNS), hormonal and renal systems, dopamine (DA) has also been increasingly employed as a functional monomer in the fabrication of surface molecular imprinting polymers (MIPs) for valuable analytes. Herein, we demonstrate the effective imprinting of 6-thioguanine (6-TG), an anticancer drug, via mussel-inspired self-polymerization of dopamine conducted in a weakly alkaline solution over reduced graphene oxide (rGO). The polymerization of 6-TG resulted into a thin polydopamine (PDA) film of 8.

View Article and Find Full Text PDF

Cancer has been responsible for high morbidity and mortality globally. The treatment of cancer is possible using different kinds of therapies using anticancer drugs if it is diagnosed at the right time. Nevertheless, their appropriate administration for maximum therapeutic effect and their elimination from the patient's body causing environmental problems are two big issues which could be successfully abated using molecular imprinted polymers (MIPs) owing to their unique features.

View Article and Find Full Text PDF

Doping with heteroatoms is a well-established method to tune the electronic properties and surface chemistry of graphene. Herein, we demonstrate the synthesis of a fluorine-doped reduced graphene oxide (FrGO) at low temperatures that offers multiple opportunities in applied fields. The as-synthesized FrGO product shows a better electrical conductivity of 750 S m than that of undoped rGO with an electrical conductivity of 195 S m.

View Article and Find Full Text PDF

This work demonstrates the facile and efficient preparation protocol of β-Cyclodextrin-reduced graphene oxide modified glassy carbon electrode (β-CD/RGO/GCE) sensor for an impressive chiral selectivity analysis for phenylalanine enantiomers. In this work, the immobilization of β-CD over graphene sheets allows the excellent enantiomer recognition due to the large surface area and high conductivity of graphene sheets and extraordinary supramolecular (host-guest interaction) property of β-CD. The proposed sensor was well characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and electrochemical impedance spectroscopy (EIS) techniques.

View Article and Find Full Text PDF

Molecular imprinted polymerization is considered one of the most useful preparation strategies to obtain highly selective polymeric materials called molecular imprinted polymers (MIPs). It has attracted a tremendous amount of interest in the last decade. Consequently, MIPs have been employed in a variety of applications including chromatographic separation, sensors and biosensors fabrication, drug delivery, proteomic analysis and plastic antibody synthesis, etc.

View Article and Find Full Text PDF

This review is aimed to discuss the molecular imprinted polymer (MIP)-based drug delivery systems (DDS). Molecular imprinted polymers have proved to possess the potential and also as a suitable material in several areas over a long period of time. However, only recently it has been employed for pharmaceuticals and biomedical applications, particularly as drug delivery vehicles due to properties including selective recognition generated from imprinting the desired analyte, favorable in harsh experimental conditions, and feedback-controlled recognitive drug release.

View Article and Find Full Text PDF

Diabetes is a major health problem causing 4 million deaths each year and 171 million people suffering worldwide. Although there is no cure for diabetes, nevertheless, the blood glucose level of diabetic patients should be monitored tightly to avoid further complications. Thus, monitoring of glucose in blood has become an inevitable need leading to fabrication of accurate and sensitive advanced blood sugar detection devices for clinical diagnosis and personal care.

View Article and Find Full Text PDF

To extend the application of molecularly imprinted polymers, the dual-templates molecularly imprinted monolithic columns were developed in a capillary format. Two templates serotonin and histamine were simultaneously imprinted using two different functional monomers such as methacrylic acid (MAA) and methylenesuccinic acid (MSA) in a mixture of ethylene glycol dimethacrylate (EDMA) as a cross-linker and AIBN as polymerization initiator dissolved in DMF as porogen. The resulting molecular imprinted polymers (MIPs) were characterized based on their performance in the CEC separation of two imprinted templates.

View Article and Find Full Text PDF

A facile, reliable, reproducible and ultra-high sensitive aqueous ammonia chemical sensor has been fabricated based on the utilization of La(0.7)Sr(0.3)MnO3 nanoparticles (LSMO NPs), as efficient electron mediators, and reported in this paper.

View Article and Find Full Text PDF

We report here the fabrication of a robust, highly sensitive, reliable and reproducible phenyl hydrazine chemical sensor using Ag-doped ZnO nanoflowers as efficient electron mediators. The Ag-doped ZnO nanoflowers were synthesized by facile hydrothermal process at low-temperature and characterized in detail in terms of their morphological, structural, compositional and optical properties. The detailed morphological and structural characterizations revealed that the synthesized nanostructures were flower-shaped, grown in very high-density, and possessed well-crystalline structure.

View Article and Find Full Text PDF

This paper reports a very simple, reliable and facile methodology to fabricate ultra-high sensitive liquid ammonia chemical sensor using well-crystalline hexagonal-shaped ZnO nanopencils as an efficient electron mediator. A low-temperature facile hydrothermal technique was used to synthesize ZnO nanopencils. The synthesized nanopencils were characterized in detail in terms of their morphological, structural and optical properties which confirmed that the synthesized nanomaterial is well-crystalline, possessing wurtzite hexagonal phase and possess very good optical properties.

View Article and Find Full Text PDF

A simple and highly sensitive method for simultaneous detection of anticancer drugs is developed by integrating the preconcentration and separation steps in a microfluidic device with an amperometric biosensor. An amperometric detection with dsDNA and cardiolipin modified screen printed electrodes are used for the detection of anticancer drugs at the end of separation channel. The preconcentration capacity is enhanced thoroughly using field amplified sample stacking and field amplified sample injection techniques.

View Article and Find Full Text PDF

In this study, an open-tubular capillary electrochromatography (OT-CEC) column with a monolithic layer of molecularly imprinted polymer (MIP) based on methacrylic acid, ethylene glycol dimethacrylate, and 4-styrenesulfonic acid was utilized for the simultaneous separation and characterization of phospholipid (PL) molecular structures by interfacing with electrospray ionization-tandem mass spectrometry (ESI-MS-MS). Introducing an MIP-based monolith along with charged species at the OT column made it possible to separate PL molecules based on differences in head groups and acyl chain lengths in CEC. For the interface of OT-CEC with ESI-MS-MS, a simple nanospray interface utilizing a sheath flow was developed and the resulting OT-CEC-ESI-MS-MS was able to separate PL standards (phosphatidylserines, phosphatidylethanolamines, phosphatidylglycerols, phosphatidic acid, and lysophosphatidylglycerols).

View Article and Find Full Text PDF