Phys Rev E Stat Nonlin Soft Matter Phys
May 2011
The problem of the helix-coil transition of biopolymers in explicit solvents, such as water, with the ability for hydrogen bonding with a solvent is addressed analytically using a suitably modified version of the Generalized Model of Polypeptide Chains. Besides the regular helix-coil transition, an additional coil-helix or reentrant transition is also found at lower temperatures. The reentrant transition arises due to competition between polymer-polymer and polymer-water hydrogen bonds.
View Article and Find Full Text PDFThe generalized model of polypeptide chains is extended to describe the helix-coil transition in a system comprised of two chains interacting side-by-side. The Hamiltonian of the model takes into account four possible types of interactions between repeated units of the two chains, i.e.
View Article and Find Full Text PDFThe generalized model of polypeptide chains (GMPC) is expanded to simultaneously consider two types of interactions occurring over different scales. This new two scale GMPC is applied in several specific cases to examine: The combined influence of stacking or antistacking and hydrogen bonding, or spatial restrictions on the length of helical segments, on the cooperativity and temperature interval of the helix-coil transition of duplex DNA. For the cases of stacking or antistacking in combination with hydrogen bonding the model reduces to the basic uniscale model with a redefined scaling parameter Delta.
View Article and Find Full Text PDF