Publications by authors named "Sferruzzi-Perri A"

The placenta is a gatekeeper between the mother and fetus, adapting its structure and functions to support optimal fetal growth. Studies exploring adaptations of placentae that support the development of genetically small fetuses are lacking. Here, using a mouse model of impaired fetal growth, achieved by deleting insulin-like growth factor 2 (Igf2) in the epiblast, we assessed placental nutrient transfer and umbilical artery (UA) blood flow during late gestation.

View Article and Find Full Text PDF

Background: Recent advances have significantly expanded our understanding of the gut microbiome's influence on host physiology and metabolism. However, the specific role of certain microorganisms in gestational health and fetal development remains underexplored.

Objective: This study investigates the impact of Bifidobacterium breve UCC2003 on fetal brain metabolism when colonized in the maternal gut during pregnancy.

View Article and Find Full Text PDF

Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles.

View Article and Find Full Text PDF

Introduction: Gestational diabetes mellitus (GDM) is a major pregnancy metabolic disorder and is strongly linked with obesity. Kisspeptin is a hormone that increases several thousand-fold in the maternal circulation during human pregnancy, with placenta as its main source. Studies have suggested that kisspeptin regulates trophoblast invasion and promotes pancreatic insulin secretion and peripheral insulin sensitivity.

View Article and Find Full Text PDF

According to the Developmental Origins of Health and Disease hypothesis, exposure to certain environmental influences during early life may be a key determinant of fetal development and short- and long-term offspring health. Indeed, adverse conditions encountered during the fetal, perinatal, and early childhood stages can alter normal development and growth, as well as put the offspring at elevated risk of developing long-term health conditions in adulthood, including chronic kidney disease and cardiovascular diseases. Of relevance in understanding the mechanistic basis of these long-term health conditions are previous findings showing low glomerular number in human intrauterine growth restriction and low birth weight-indicators of a suboptimal intrauterine environment.

View Article and Find Full Text PDF

Background: Obesity during pregnancy is related to adverse maternal and neonatal outcomes. Factors involved in these outcomes may include increased maternal insulin resistance, inflammation, oxidative stress, and nutrient mishandling. The placenta is the primary determinant of fetal outcomes, and its function can be impacted by maternal obesity.

View Article and Find Full Text PDF

Obesity and gestational diabetes (GDM) impact fetal growth during pregnancy. Iron is an essential micronutrient needed for energy-intense feto-placental development, but if mis-handled can lead to oxidative stress and ferroptosis (iron-dependent cell death). In a mouse model showing maternal obesity and glucose intolerance, we investigated the association of materno-fetal iron handling and placental ferroptosis, oxidative damage and stress signalling activation with fetal growth.

View Article and Find Full Text PDF

The mouse is a common animal species used for translational studies. In reproductive studies, this animal is typically preferred over other models as the rodent placenta shows similarities to the human but has a relatively short gestational period. In mice, the transport of oxygen and nutrients between mother and fetus occurs in a restricted area of the placenta called the labyrinth zone.

View Article and Find Full Text PDF

The obesity epidemic has led to a growing body of research investigating the consequences of maternal obesity on pregnancy and offspring health. The placenta, traditionally viewed as a passive intermediary between mother and fetus, is known to play a critical role in modulating the intrauterine environment and fetal development, and we now know that maternal obesity leads to increased inflammation, oxidative stress, and altered placental function. Here, we review recent research exploring the involvement of inflammation and oxidative stress as mechanisms impacting the placenta and fetus during obese pregnancy.

View Article and Find Full Text PDF
Article Synopsis
  • The placenta, while essential for fetal development, faces exposure to infectious agents and chemicals from maternal blood that can harm its structure and function.
  • Advances in research have clarified how some infections are transmitted to the fetus and their effects, but there's still limited understanding of how these infections or noninfectious agents impact the placenta itself.
  • Diagnosing issues in the placenta during pregnancy is challenging, often only diagnosed after birth, highlighting the need for better methods to understand and address placental health in expectant mothers.
View Article and Find Full Text PDF

Pregnancy-related problems have been linked to impairments in maternal uterine spiral artery (SpA) remodeling. The mechanisms underlying this association are still unclear. It is also unclear whether hyperandrogenism and insulin resistance, the two common manifestations of polycystic ovary syndrome, affect uterine SpA remodeling.

View Article and Find Full Text PDF

Exposure to extreme heat in pregnancy increases the risk of stillbirth. Progress in reducing stillbirth rates has stalled, and populations are increasingly exposed to high temperatures and climate events that may further undermine health strategies. This narrative review summarises the current clinical and epidemiological evidence of the impact of maternal heat exposure on stillbirth risk.

View Article and Find Full Text PDF

Maternal-offspring interactions in mammals involve both cooperation and conflict. The fetus has evolved ways to manipulate maternal physiology to enhance placental nutrient transfer, but the mechanisms involved remain unclear. The imprinted Igf2 gene is highly expressed in murine placental endocrine cells.

View Article and Find Full Text PDF

In vivo and in vitro studies demonstrate that mitochondria in the oocyte, are susceptible to damage by suboptimal pre/pregnancy conditions, such as obesity. These suboptimal conditions have been shown to induce mitochondrial dysfunction (MD) in multiple tissues of the offspring, suggesting that mitochondria of oocytes that pass from mother to offspring, can carry information that can programme mitochondrial and metabolic dysfunction of the next generation. They also suggest that transmission of MD could increase the risk of obesity and other metabolic diseases in the population inter- and trans-generationally.

View Article and Find Full Text PDF
Article Synopsis
  • Fetal growth restriction (FGR) is a significant cause of health issues and death in newborns, largely due to problems with placental development and function.
  • The study used predictive modeling and systematic sampling to compare placental features between healthy pregnancies and those affected by FGR, finding notable differences in development and gene expression.
  • Insights gained from this research could help us better understand how placental structure relates to its function, potentially improving knowledge of placental diseases and FGR.
View Article and Find Full Text PDF

Adverse maternal environments such as small size, malnutrition, and metabolic conditions are known to influence fetal growth outcomes. Similarly, fetal growth and metabolic alterations may alter the intrauterine environment and affect all fetuses in multiple gestation/litter-bearing species. The placenta is the site of convergence between signals derived from the mother and the developing fetus/es.

View Article and Find Full Text PDF

Background: Biometrical and blood flow examinations are fundamental for assessing fetoplacental development during pregnancy. Guinea pigs have been proposed as a good model to study fetal development and related gestational complications; however, longitudinal growth and blood flow changes in utero have not been properly described. This study aimed to describe fetal and placental growth and blood flow of the main intrauterine vascular beds across normal guinea pig pregnancy and to discuss the relevance of this data for human pregnancy.

View Article and Find Full Text PDF

Maternal obesity and gestational diabetes mellitus (GDM) are associated with insulin resistance and health risks for mother and offspring. Obesity is also characterized by low-grade inflammation, which in turn, impacts insulin sensitivity. The placenta secretes inflammatory cytokines and hormones that influence maternal glucose and insulin handling.

View Article and Find Full Text PDF

Conditions such as small for gestational age (SGA), which is defined as birthweight less than 10 percentile for gestational age can predispose to neurodevelopmental abnormalities compared to babies with normal birthweight. Fetal growth and birthweight depend on placental function, as this organ transports substrates to the developing fetus and it acts as a source of endocrine factors, including steroids and prolactins that are required for fetal development and pregnancy maintenance. To advance our knowledge on the aetiology of fetal growth disorders, the vast majority of the research has been focused on studying the transport function of the placenta, leaving practically unexplored the contribution of placental hormones in the regulation of fetal growth.

View Article and Find Full Text PDF

New Findings: What is the topic of this review? How the placenta, which transports nutrients and oxygen to the fetus, may alter its support of fetal growth developmentally and with adverse gestational conditions. What advances does it highlight? Placental formation and function alter with the needs of the fetus for substrates for growth during normal gestation and when there is enhanced competition for substrates in species with multiple gestations or adverse gestational environments, and this is mediated by imprinted genes, signalling pathways, mitochondria and fetal sexomes.

Abstract: The placenta is vital for mammalian development and a key determinant of life-long health.

View Article and Find Full Text PDF

Fetal growth is reliant on placental formation and function, which, in turn, requires the energy produced by the mitochondria. Prior work has shown that both mother and fetus operate via the phosphoinositol 3-kinase (PI3K)-p110α signalling pathway to modify placental development, function, and fetal growth outcomes. This study in mice used genetic inactivation of PI3K-p110α (α/+) in mothers and fetuses and high resolution respirometry to investigate the influence of maternal and fetal PI3K-p110α deficiency on fetal and placental growth, in relation to placental mitochondrial bioenergetics, for each fetal sex.

View Article and Find Full Text PDF

Aims: Diets containing high-fat and high sugar (HFHS) lead to overweight/obesity. Overweight/obesity increases the risk of infertility, and of the pregnant mother and her child for developing metabolic conditions. Overweight/obesity has been recreated in mice, but most studies focus on the effects of chronic, long-term HFHS diet exposure.

View Article and Find Full Text PDF

Pregnancy requires adaptations in maternal metabolism to support fetal growth. The phosphoinositol-3-kinase (PI3K) signalling pathway controls multiple biological processes and defects in this pathway are linked to metabolic disorders including insulin resistance and glucose intolerance in non-pregnant animals. However, relatively little is known about the contribution of PI3K signalling to the maternal metabolic adaptations during pregnancy.

View Article and Find Full Text PDF

The gut microbiota plays a central role in regulating host metabolism. While substantial progress has been made in discerning how the microbiota influences host functions post birth and beyond, little is known about how key members of the maternal gut microbiota can influence feto-placental growth. Notably, in pregnant women, Bifidobacterium represents a key beneficial microbiota genus, with levels observed to increase across pregnancy.

View Article and Find Full Text PDF

The use of assisted reproductive technologies (ART) worldwide has led to the conception and birth of over eight million babies since being implemented in 1978. ART use is currently on the rise, given growing infertility and the increase in conception age among men and women in industrialized countries. Though obstetric and perinatal outcomes have improved over the years, pregnancies achieved by ART still bear increased risks for the mother and the unborn child.

View Article and Find Full Text PDF